Free Access
Volume 10, September 2006
Page(s) 206 - 215
Published online 03 May 2006
  1. T. Bergstrom and M. Bagnoli, Log-concave probability and its applications. Econom. Theory 26 (2005) 445–469. [Google Scholar]
  2. B. Biais, D. Martimort and J.-C. Rochet, Competing mechanisms in a common value environment. Econometrica 68 (2000) 799–837. [CrossRef] [Google Scholar]
  3. M. Bóna and R. Ehrenborg, A combinatorial proof of the log-concavity of the numbers of permutations with k runs. J. Combin. Theory Ser. A 90 (2000) 293–303. [CrossRef] [MathSciNet] [Google Scholar]
  4. F. Brenti, Unimodal, log-concave and Pólya frequency sequences in combinatorics. Mem. Amer. Math. Soc. 81 (1989) viii+106. [Google Scholar]
  5. F. Brenti, Expansions of chromatic polynomials and log-concavity. Trans. Amer. Math. Soc. 332 (1992) 729–756. [CrossRef] [MathSciNet] [Google Scholar]
  6. F. Brenti, Log-concave and unimodal sequences in algebra, combinatorics, and geometry: an update in Jerusalem combinatorics '93, Amer. Math. Soc., Providence, RI, Contemp. Math. 178 (1994) 71–89. [Google Scholar]
  7. H. Davenport and G. Pólya, On the product of two power series. Canadian J. Math. 1 (1949) 1–5. [CrossRef] [MathSciNet] [Google Scholar]
  8. V. Gasharov, On the Neggers-Stanley conjecture and the Eulerian polynomials. J. Combin. Theory Ser. A 82 (1998) 134–146. [CrossRef] [MathSciNet] [Google Scholar]
  9. S.G. Hoggar, Chromatic polynomials and logarithmic concavity. J. Combin. Theory Ser. B 16 (1974) 248–254. [CrossRef] [Google Scholar]
  10. K. Joag-Dev and F. Proschan, Negative association of random variables with applications. Ann. Statist. 11 (1983) 286–295. [CrossRef] [MathSciNet] [Google Scholar]
  11. E.H. Lieb, Concavity properties and a generating function for Stirling numbers. J. Combin. Theory 5 (1968) 203–206. [CrossRef] [Google Scholar]
  12. E.J. Miravete, Preserving log-concavity under convolution: Comment. Econometrica 70 (2002) 1253–1254. [CrossRef] [Google Scholar]
  13. C.P. Niculescu, A new look at Newton's inequalities. JIPAM. J. Inequal. Pure Appl. Math. 1 (2000) Issue 2, Article 17; see also [Google Scholar]
  14. R.C. Read, An introduction to chromatic polynomials. J. Combin. Theory 4 (1968) 52–71. [CrossRef] [Google Scholar]
  15. B.E. Sagan, Inductive and injective proofs of log concavity results. Discrete Math. 68 (1988) 281–292. [CrossRef] [MathSciNet] [Google Scholar]
  16. B.E. Sagan, Inductive proofs of q-log concavity. Discrete Math. 99 (1992) 289–306. [CrossRef] [MathSciNet] [Google Scholar]
  17. R.P. Stanley, Log-concave and unimodal sequences in algebra, combinatorics, and geometry, in Graph theory and its applications: East and West (Jinan, 1986), Ann. New York Acad. Sci., New York Acad. Sci., New York 576 (1989) 500–535. [Google Scholar]
  18. Y. Wang, Linear transformations preserving log-concavity. Linear Algebra Appl. 359 (2003) 161–167. [CrossRef] [MathSciNet] [Google Scholar]
  19. Y. Wang and Y.-N. Yeh, Log-concavity and LC-positivity. Available at arXiv:math.CO/0504164 (2005). To appear in J. Combin. Theory Ser A. [Google Scholar]
  20. Y. Wang and Y.-N. Yeh, Polynomials with real zeros and Pólya frequency sequences. J. Combin. Theory Ser. A 109 (2005) 63–74. [CrossRef] [MathSciNet] [Google Scholar]
  21. D.J.A. Welsh, Matroid theory, L.M.S. Monographs, No. 8. Academic Press, London (1976). [Google Scholar]
  22. H.S. Wilf, Generatingfunctionology. Academic Press Inc., Boston, MA, second edition (1994). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.