Free Access
Issue
ESAIM: PS
Volume 10, September 2006
Page(s) 380 - 405
DOI https://doi.org/10.1051/ps:2006016
Published online 20 October 2006
  1. M. Abramowitz and I.A. Stegun, Handbook of mathematical functions. National Bureau of Standards (1964). [Google Scholar]
  2. R.A. Adams, Sobolev spaces. Academic Press, New York-London (1975). [Google Scholar]
  3. E. Alòs, J.A. León and D. Nualart, Stochastic heat equation with random coefficients. Probab. Theory Related Fields 115 (1999) 41–94. [CrossRef] [MathSciNet] [Google Scholar]
  4. R.C. Dalang and N.E. Frangos, The stochastic wave equation in two spatial dimensions. Ann. Probab. 26 (1998) 187–212. [CrossRef] [MathSciNet] [Google Scholar]
  5. R.C. Dalang, Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.'s. Electron. J. Probab. 4 (1999) 1–29. [CrossRef] [MathSciNet] [Google Scholar]
  6. G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, 2nd Edition. Cambridge University Press (1998). [Google Scholar]
  7. W.F. Donoghue, Distributions and Fourier transforms. Academic Press, New York (1969). [Google Scholar]
  8. S.D. Eidelman and N.V. Zhitarashu, Parabolic Boundary Value Problems. Birkhäuser Verlag, Basel (1998). [Google Scholar]
  9. A. Friedman, Partial differential equations of parabolic type. Prentice-Hall, Inc., Englewood Cliffs, N.J. (1964). [Google Scholar]
  10. I.M. Gel'fand and N.Ya. Vilenkin, Generalized functions. Vol. 4: Applications of harmonic analysis. Academic Press, New York (1964). [Google Scholar]
  11. M.A Krasnoselskii, E.I. Pustylnik, P.E. Sobolevski and P.P. Zabrejko, Integral operators in spaces of summable functions. Noordhoff International Publishing, Leyden (1976). [Google Scholar]
  12. A.A. Kirillov and A.D. Gvishiani, Theorems and problems in functional analysis. Springer-Verlag, New York-Berlin (1982). [Google Scholar]
  13. N.V. Krylov and B.L. Rozovsky, Stochastic evolution systems. Russian Math. Surveys 37 (1982) 81–105. [CrossRef] [Google Scholar]
  14. N.V. Krylov, On Lp-theory of stochastic partial differential equations in the whole space. SIAM J. Math. Anal. 27 (1996) 313–340. [CrossRef] [MathSciNet] [Google Scholar]
  15. N.V. Krylov, An analytic approach to SPDEs, in Stochastic partial differential equations: six perspectives, Math. Surveys Monogr. 64, American Mathematical Society, Providence (1999) 185–242. [Google Scholar]
  16. N.V. Krylov and V. Lototsky, A Sobolev space theory of SPDEs with constant coefficients on a half line. SIAM J. Math. Anal. 30 (1998) 298–325. [CrossRef] [Google Scholar]
  17. O.A. Ladyženskaja, V.A. Solonnikov and N.N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs 23, American Mathematical Society (1968). [Google Scholar]
  18. O. Lévêque, Hyperbolic stochastic partial differential equations driven by boundary noises. Thèse 2452, Lausanne, EPFL (2001). [Google Scholar]
  19. R. Mikulevicius, On the Cauchy problem for parabolic SPDEs in Hölder classes. Ann. Probab. 28 (2000) 74–103. [CrossRef] [MathSciNet] [Google Scholar]
  20. E. Pardoux, Stochastic partial differential equations and filtering of diffusion processes. Stochastics 3 (1979) 127–167. [MathSciNet] [Google Scholar]
  21. B.L. Rozovsky, Stochastic evolution equations. Linear theory and applications to non-linear filtering. Kluwer (1990). [Google Scholar]
  22. L. Schwartz, Théorie des distributions. Hermann, Paris (1966). [Google Scholar]
  23. M. Sanz-Solé and M. Sarrà, Path properties of a class of Gaussian processes with applications to spde's. Canadian Mathematical Society Conference Proceedings 28 (2000) 303–316. [Google Scholar]
  24. M. Sanz-Solé and M. Sarrà, Hölder Continuity for the stochastic heat equation with spatially correlated noise, in Progress in Probability 52, Birkhäuser Verlag (2002) 259–268. [Google Scholar]
  25. M. Sanz-Solé and P.-A. Vuillermot, Equivalence and Hölder-Sobolev regularity of solutions for a class of non-autonomous stochastic partial differential equations. Ann. Inst. H. Poincaré Probab. Statist. 39 (2003) 703–742. [CrossRef] [MathSciNet] [Google Scholar]
  26. N. Shimakura, Partial differential operators of elliptic type. American Mathematical Society, Providence (1992). [Google Scholar]
  27. H. Triebel, Theory of function spaces. II. Monographs in Mathematics 84, Birkhäuser Verlag, Basel (1992). [Google Scholar]
  28. J.B. Walsh, An Introduction to Stochastic Partial Differential Equations, in École d'été de Probabilités de Saint-Flour XIV (1984). Lect. Notes Math. 1180 (1986) 265–439. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.