Free Access
Issue
ESAIM: PS
Volume 9, June 2005
Page(s) 74 - 97
DOI https://doi.org/10.1051/ps:2005005
Published online 15 November 2005
  1. R. Azencott, Grandes déviations et applications, in École d'été de Probabilité de Saint-Flour, P.L. Hennequin Ed. Springer-Verlag, Berlin. Lect. Notes Math. 774 (1980) 1–176. [CrossRef]
  2. A. Badrikian and S. Chevet, Mesures cylindriques, espaces de Wiener et fonctions aléatoires Gaussiennes. Springer-Verlag, Berlin. Lect. Notes Math. 379 (1974).
  3. Y.M. Berezansky, Z.G. Sheftel and G.F. Us, Functional Analysis, Vol. 1. Oper. Theor. Adv. Appl. 85 (1997) 125–134.
  4. G. Buttazzo, M. Giaquinta and S. Hildebrandt, One-dimensional Variational Problems. Oxford University Press, Oxford. Oxford Lect. Ser. Math. Appl. 15 (1998).
  5. T. Cazenave, An Introduction to Nonlinear Schrödinger Equations. Instituto de Matématica-UFRJ Rio de Janeiro, Brazil. Textos de Métodos Matématicos 26 (1993).
  6. G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions. Cambridge University Press: Cambridge, England. Encyclopedia Math. Appl. (1992).
  7. A. de Bouard and A. Debussche, The Stochastic Nonlinear Schrödinger Equation in H1. Stochastic Anal. Appl. 21 (2003) 97–126. [CrossRef] [MathSciNet]
  8. A. de Bouard and A. Debussche, On the effect of a noise on the solutions of the focusing supercritical nonlinear Schrödinger equation. Probab. Theory Relat. Fields 123 (2002) 76–96. [CrossRef]
  9. A. de Bouard and A. Debussche, Finite time blow-up in the additive supercritical nonlinear Schrödinger equation: the real noise case. Contemp. Math. 301 (2002) 183–194.
  10. A. Debussche and L. Di Menza, Numerical simulation of focusing stochastic nonlinear Schrödinger equations. Phys. D 162 (2002) 131–154. [CrossRef] [MathSciNet]
  11. S.A. Derevyanko, S.K. Turitsyn and D.A. Yakusev, Non-gaussian statistics of an optical soliton in the presence of amplified spontaneaous emission. Optics Lett. 28 (2003) 2097–2099. [CrossRef] [PubMed]
  12. J.D. Deuschel and D.W. Stroock, Large Deviations. Academic Press, New York. Pure Appl. Math. (1986).
  13. A. Dembo and O. Zeitouni, Large deviation techniques and applications (2nd edition). Springer-Verlag, New York. Appl. Math. 38 (1998).
  14. P.D. Drummond and J.F. Corney, Quantum noise in optical fibers. II. Raman jitter in soliton communications. J. Opt. Soc. Am. B 18 (2001) 153–161. [CrossRef]
  15. L.C. Evans, Partial Differential Equations. American Mathematical Society, Providence, Rhode Island, Grad. Stud. in Math. 119 (1998).
  16. G.E. Falkovich, I. Kolokolov, V. Lebedev and S.K. Turitsyn, Statistics of soliton-bearing systems with additive noise. Phys. Rev. E 63 (2001) 025601(R).
  17. G. Falkovich, I. Kolokolov, V. Lebedev, V. Mezentsev and S.K. Turitsyn, Non-Gaussian error probability in optical soliton transmission. Physica D 195 (2004) 1–28. [CrossRef] [MathSciNet]
  18. É. Gautier, Uniform large deviations for the nonlinear Schrödinger equation with multiplicative noise. Preprint IRMAR, Rennes (2004). Submitted for publication.
  19. T. Kato, On Nonlinear Schrödinger Equation. Ann. Inst. H. Poincaré, Phys. Théor. 46 (1987) 113–129.
  20. V. Konotop and L. Vázquez, Nonlinear random waves. World Scientific Publishing Co., Inc.: River Edge, New Jersey (1994).
  21. R.O. Moore, G. Biondini and W.L. Kath, Importance sampling for noise-induced amplitude and timing jitter in soliton transmission systems. Optics Lett. 28 (2003) 105–107. [CrossRef]
  22. C. Sulem and P.L. Sulem, The Nonlinear Schrödinger Equation, Self-Focusing and Wave Collapse. Springer-Verlag, New York, Appl. Math. Sci. (1999).
  23. J.B. Walsh, An introduction to stochastic partial differential equations, in École d'été de Probabilité de Saint-Flour, P.L. Hennequin Ed. Springer-Verlag, Berlin, Lect. Notes Math. 1180 (1986) 265–439.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.