Free Access
Volume 9, June 2005
Page(s) 165 - 184
Published online 15 November 2005
  1. P. Billingsley, Convergence of Probability Measures. Wiley (1968). [Google Scholar]
  2. A. Bunimovich, H.R. Jauslin, J.L. Lebowitz, A. Pellegrinotti and P. Nielaba, Diffusive energy growth in classical and quantum driven oscillators. J. Stat. Phys. 62 (1991) 793–817. [CrossRef] [Google Scholar]
  3. L. Coutin and Z. Qian, Stochastic analysis, rough path analysis and fractional Brownian motions. Prob. Th. Related Fields 122 (2002) 108–140. [Google Scholar]
  4. H. Doss, Liens entre équations différentielles stochastiques et ordinaires. Ann. Inst. H. Poincaré 13 (1977) 99–125. [Google Scholar]
  5. S.N. Ethier and T.G. Kurtz, Markov processes, characterization and convergence. Wiley, New York (1986). [Google Scholar]
  6. J.P. Fouque, G. Papanicolaou and R. Sircar, Derivatives in Financial Markets with Stochastic Volatility. Cambridge University Press (2000). [Google Scholar]
  7. J. Garnier, A multi-scaled diffusion-approximation theorem. Applications to wave propagation in random media. ESAIM: PS 1 (1997) 183–206. [CrossRef] [EDP Sciences] [Google Scholar]
  8. J. Garnier, Asymptotic behavior of the quantum harmonic oscillator driven by a random time-dependent electric field. J. Stat. Phys. 93 (1998) 211–241. [CrossRef] [Google Scholar]
  9. J. Garnier, Scattering, spreading, and localization of an acoustic pulse by a random medium, in Three Courses on Partial Differential Equations, E. Sonnendrücker Ed. Walter de Gruyter, Berlin (2003) 71–123. [Google Scholar]
  10. J. Garnier and R. Marty, Effective pulse dynamics in optical fibers with polarization mode dispersion. Preprint, submitted to Wave Motion. [Google Scholar]
  11. R.Z. Khasminskii, A limit theorem for solutions of differential equations with random right hand side. Theory Probab. Appl. 11 (1966) 390–406. [Google Scholar]
  12. H.J. Kushner, Approximation and weak convergence methods for random processes. MIT Press, Cambridge (1994). [Google Scholar]
  13. M. Ledoux, T. Lyons and Z. Qian, Lévy area of Wiener processes in Banach spaces. Ann. Probab. 30 (2002) 546–578. [CrossRef] [MathSciNet] [Google Scholar]
  14. M. Ledoux, Z. Qian and T. Zhang, Large deviations and support theorem for diffusion processes via rough paths. Stoch. Proc. Appl. 102 (2002) 265–283. [CrossRef] [Google Scholar]
  15. A. Lejay, An introduction to rough paths, in Séminaire de Probabilités XXXVII. Lect. Notes Math. Springer-Verlag (2003). [Google Scholar]
  16. T. Lyons, Differential equations driven by rough signals. Rev. Mat. Iberoamer. 14 (1998) 215–310. [Google Scholar]
  17. T. Lyons, Differential equations driven by rough signals (I): an extension of an inequality of L.C. Young. Math. Res. Lett. 1 (1994) 451–464. [CrossRef] [MathSciNet] [Google Scholar]
  18. T. Lyons and Z. Qian, Flow equations on spaces of rough paths. J. Funct. Anal. 149 (1997) 135–159. [CrossRef] [MathSciNet] [Google Scholar]
  19. T. Lyons and Z. Qian, System control and rough paths. Oxford Mathematical Monographs. Oxford University Press (2002). [Google Scholar]
  20. R. Marty, Théorème limite pour une équation différentielle à coefficient aléatoire à mémoire longue. C. R. Acad. Sci. Paris, Ser. I 338 (2004). [Google Scholar]
  21. A. Messiah, Quantum Mechanics. North Holland, Amsterdam (1962). [Google Scholar]
  22. D. Middleton, Introduction to statistical communication theory. Mc Graw Hill Book Co., New York (1960). [Google Scholar]
  23. G. Papanicolaou, Waves in one dimensional random media, in École d'été de Probabilités de Saint-Flour, P.L. Hennequin Ed. Springer. Lect. Notes Math. (1988) 205–275. [Google Scholar]
  24. G. Papanicolaou and J.B. Keller, Stochastic differential equations with two applications to random harmonic oscillators and waves in random media. SIAM J. Appl. Math. 21 (1971) 287–305. [CrossRef] [MathSciNet] [Google Scholar]
  25. G. Papanicolaou and W. Kohler, Asymptotic theory of mixing stochastic ordinary differential equations. Comm. Pure Appl. Math. 27 (1974) 641–668. [CrossRef] [MathSciNet] [Google Scholar]
  26. G. Papanicolaou, D.W. Stroock and S.R.S.Varadhan, Martingale approach to some limit theorem, in Statistical Mechanics and Dynamical systems, D. Ruelle Ed. Duke Turbulence Conf., Duke Univ. Math. Series III, Part IV (1976) 1–120. [Google Scholar]
  27. G. Samorodnitsky and M.S. Taqqu, Stable non-Gaussian random processes. Chapman and Hall (1994). [Google Scholar]
  28. L.I. Schiff, Quantum Mechanics. Mac Graw Hill, New York (1968). [Google Scholar]
  29. K. Sølna, Acoustic Pulse Spreading in a Random Fractal. SIAM J. Appl. Math. 63 (2003) 1764–1788. [CrossRef] [MathSciNet] [Google Scholar]
  30. H.J. Sussmann, On the gap between deterministic and stochastic ordinary differential equations. Ann. Prob. 6 (1978) 19–41. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.