Free Access
Issue
ESAIM: PS
Volume 8, August 2004
Page(s) 87 - 101
DOI https://doi.org/10.1051/ps:2004004
Published online 15 September 2004
  1. S. Bobkov, C. Houdré and P. Tetali, λ, vertex isoperimetry and concentration. Combinatorica 20 (2000) 153–172. [CrossRef] [MathSciNet] [Google Scholar]
  2. S. Bobkov and M. Ledoux, Poincaré's inequalities and Talagrand's concentration phenomenon for the exponential distribution. Probab. Theory Relat. Fields 107 (1997) 383–400. [Google Scholar]
  3. S.G. Bobkov and M. Ledoux, On modified logarithmic Sobolev inequalities for Bernoulli and Poisson measures. J. Funct. Anal. 156 (1998) 347–365. [CrossRef] [MathSciNet] [Google Scholar]
  4. S.G. Bobkov and F. Götze, Discrete isoperimetric and Poincaré-type inequalities. Probab. Theory Relat. Fields 114 (1999) 245–277. [CrossRef] [Google Scholar]
  5. S.G. Bobkov and C. Houdré, Isoperimetric constants for product probability measures. Ann. Probab. 25 (1997) 184–205. [CrossRef] [MathSciNet] [Google Scholar]
  6. T. Cacoullos and V. Papathanasiou, Characterizations of distributions by generalizations of variance bounds and simple proofs of the CLT. J. Statist. Plann. Inference 63 (1997) 157–171. [CrossRef] [MathSciNet] [Google Scholar]
  7. J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, in Problems in analysis (Papers dedicated to Salomon Bochner, 1969) Princeton Univ. Press, Princeton, N.J. (1970) 195–199. [Google Scholar]
  8. L.H.Y. Chen and J.H. Lou, Characterization of probability distributions by Poincaré-type inequalities. Ann. Inst. H. Poincaré Probab. Statist. 23 (1987) 91–110. [MathSciNet] [Google Scholar]
  9. P. Dai Pra, A.M. Paganoni and G. Posta, Entropy inequalities for unbounded spin systems. Ann. Probab. 30 (2002) 1959–1976. [CrossRef] [MathSciNet] [Google Scholar]
  10. P. Diaconis and D. Stroock, Geometric bounds for eigenvalues of Markov chains. Ann. Appl. Probab. 1 (1991) 36–61. [CrossRef] [MathSciNet] [Google Scholar]
  11. P. Fougères, Spectral gap for log-concave probability measures on the real line. Preprint (2002). [Google Scholar]
  12. L. Gross, Logarithmic Sobolev inequalities. Amer. J. Math. 97 (1975) 1061–1083. [Google Scholar]
  13. C. Houdré, Remarks on deviation inequalities for functions of infinitely divisible random vectors. Ann. Probab. 30 (2002) 1223–1237. [CrossRef] [MathSciNet] [Google Scholar]
  14. C. Houdré and N. Privault, Concentration and deviation inequalities in infinite dimensions via covariance representations. Bernoulli 8 (2002) 697–720. [MathSciNet] [Google Scholar]
  15. C. Houdré and P. Tetali, Isoperimetric invariants for product Markov chains and graph products. Combinatorica. To appear. [Google Scholar]
  16. M. Ledoux, Concentration of measure and logarithmic Sobolev inequalities, in Séminaire de Probabilités XXXIII, Lect. Notes Math. 1709 (1999) 120–216. [Google Scholar]
  17. L. Miclo, An example of application of discrete Hardy's inequalities. Markov Process. Related Fields 5 (1999) 319–330. [MathSciNet] [Google Scholar]
  18. T. Stoyanov, Isoperimetric and related constants for graphs and Markov chains. Ph.D. Thesis, Georgia Institute of Technology (2001). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.