Free Access
Issue
ESAIM: PS
Volume 8, August 2004
Page(s) 150 - 168
DOI https://doi.org/10.1051/ps:2004008
Published online 15 September 2004
  1. H. Abbar and Ch. Suquet, Estimation L2 du contour d'un processus de Poisson homogène sur le plan. Pub. IRMA Lille 31 II (1993). [Google Scholar]
  2. D. Bosq, Contribution à la théorie de l'estimation fonctionnelle. Publications de l'Institut de Statistique de l'Université de Paris XIX (1977) 1–96. [Google Scholar]
  3. D. Bosq and J.P. Lecoutre, Théorie de l'estimation fonctionnelle. Economica, Paris (1987). [Google Scholar]
  4. A. Cowling and P. Hall, On pseudodata methods for removing boundary effects in kernel density estimation. J. Roy. Statist. Soc. B 58 (1996) 551–563. [Google Scholar]
  5. D. Deprins, L. Simar and H. Tulkens, Measuring Labor Efficiency in Post Offices, in The Performance of Public Enterprises: Concepts and Measurements, M. Marchand, P. Pestieau and H. Tulkens Ed., North Holland, Amsterdam (1984). [Google Scholar]
  6. L. Gardes, Estimating the support of a Poisson process via the Faber-Shauder basis and extreme values. Publications de l'Institut de Statistique de l'Université de Paris XXXXVI (2002) 43–72. [Google Scholar]
  7. J. Geffroy, Sur un problème d'estimation géométrique. Publications de l'Institut de Statistique de l'Université de Paris XIII (1964) 191–200. [Google Scholar]
  8. S. Girard, On the asymptotic normality of the L1 error for Haar series estimates of Poisson point processes boundaries. Statist. Probab. Lett. 66 (2004) 81–90. [CrossRef] [MathSciNet] [Google Scholar]
  9. S. Girard and P. Jacob, Extreme values and Haar series estimates of point processes boundaries. Scand. J. Statist. 30 (2003) 369–384. [CrossRef] [MathSciNet] [Google Scholar]
  10. S. Girard and P. Jacob, Projection estimates of point processes boundaries. J. Statist. Plann. Inference 116 (2003) 1–15. [CrossRef] [MathSciNet] [Google Scholar]
  11. P. Hall, B.U. Park and S.E. Stern, On polynomial estimators of frontiers and boundaries. J. Multiv. Analysis 66 (1998) 71–98. [CrossRef] [MathSciNet] [Google Scholar]
  12. K. Knight, Limiting distributions of linear programming estimators. Extremes 4 (2001) 87–103. [CrossRef] [MathSciNet] [Google Scholar]
  13. W. Härdle, B.U. Park and A.B. Tsybakov, Estimation of a non sharp support boundaries. J. Multiv. Analysis 43 (1995) 205–218. [Google Scholar]
  14. W. Härdle, P. Hall and L. Simar, Iterated bootstrap with application to frontier models. J. Productivity Anal. 6 (1995) 63–76. [CrossRef] [Google Scholar]
  15. A. Hardy and J.P. Rasson, Une nouvelle approche des problèmes de classification automatique. Statistique et analyse des données 7 (1982) 41–56. [Google Scholar]
  16. P. Jacob, Estimation du contour discontinu d'un processus ponctuel sur le plan. Publications de l'Institut de Statistique de l'Université de Paris XXIX (1984) 1–26. [Google Scholar]
  17. P. Jacob and P. Suquet, Estimating the edge of a Poisson process by orthogonal series. J. Statist. Plann. Inference 46 (1995) 215–234. [CrossRef] [MathSciNet] [Google Scholar]
  18. A. Korostelev, L. Simar and A.B. Tsybakov, Efficient estimation of monotone boundaries. Ann. Statist. 23 (1995) 476–489. [CrossRef] [MathSciNet] [Google Scholar]
  19. A.P. Korostelev and A.B. Tsybakov, Minimax theory of image reconstruction. Lect. Notes Statist. 82 (1993). [Google Scholar]
  20. E. Mammen and A.B. Tsybakov, Asymptotical minimax recovery of set with smooth boundaries. Ann. Statist. 23 (1995) 502–524. [CrossRef] [MathSciNet] [Google Scholar]
  21. R.D. Reiss, A course on point processes. Springer series in statistics (1993). [Google Scholar]
  22. A. Renyi and R. Sulanke, Uber die konvexe Hülle von n zufälligen gewählten Punkten. Z. Wahrscheinlichkeitstheorie verw. Geb. 2 (1963) 75–84. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.