Free Access
Issue
ESAIM: PS
Volume 8, August 2004
Page(s) 115 - 131
DOI https://doi.org/10.1051/ps:2004007
Published online 15 September 2004
  1. A. Benveniste, M. Métivier and P. Priouret, Adaptive algorithms and stochastic approximations. Springer-Verlag, Berlin (1990). Translated from the French by Stephen S. Wilson.
  2. O. Brandière and M. Duflo, Les algorithmes stochastiques contournent-ils les pièges ? C. R. Acad. Sci. Paris Ser. I Math. 321 (1995) 335–338. [MathSciNet]
  3. H.F. Chen, G. Lei and A.J. Gao, Convergence and robustness of the Robbins-Monro algorithm truncated at randomly varying bounds. Stochastic Process. Appl. 27 (1988) 217–231. [CrossRef] [MathSciNet]
  4. D. Concordet and O.G. Nunez, A simulated pseudo-maximum likelihood estimator for nonlinear mixed models. Comput. Statist. Data Anal. 39 (2002) 187–201. [CrossRef] [MathSciNet]
  5. B. Delyon, M. Lavielle and E. Moulines, Convergence of a stochastic approximation version of the EM algorithm. Ann. Statist. 27 (1999) 94–128. [CrossRef] [MathSciNet]
  6. A.P. Dempster, N.M. Laird and D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39 (1977) 1–38.
  7. M.G. Gu and F.H. Kong, A stochastic approximation algorithm with Markov chain Monte-Carlo method for incomplete data estimation problems. Proc. Natl. Acad. Sci. USA 95 (1998) 7270–7274 (electronic). [CrossRef] [MathSciNet]
  8. M.G. Gu and H.-T. Zhu, Maximum likelihood estimation for spatial models by Markov chain Monte Carlo stochastic approximation. J. R. Stat. Soc. Ser. B 63 (2001) 339–355. [CrossRef] [MathSciNet]
  9. K. Lange, A gradient algorithm locally equivalent to the EM algorithm. J. R. Stat. Soc. Ser. B 57 (1995) 425–437.
  10. M. Lavielle and E. Lebarbier, An application of MCMC methods to the multiple change-points problem. Signal Processing 81 (2001) 39–53. [CrossRef]
  11. M. Lavielle and E. Moulines, A simulated annealing version of the EM algorithm for non-Gaussian deconvolution. Statist. Comput. 7 (1997) 229–236. [CrossRef]
  12. X.-L. Meng and D.B. Rubin, Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80 (1993) 267–278. [CrossRef] [MathSciNet]
  13. K.L. Mengersen and R.L. Tweedie, Rates of convergence of the Hastings and Metropolis algorithms. Ann. Statist. 24 (1996) 101–121. [CrossRef] [MathSciNet]
  14. S.P. Meyn and R.L. Tweedie, Markov chains and stochastic stability, Springer-Verlag London Ltd., London. Comm. Control Engrg. Ser. (1993).
  15. C.-F. Jeff Wu, On the convergence properties of the EM algorithm. Ann. Statist. 11 (1983) 95–103. [CrossRef] [MathSciNet]
  16. J.-F. Yao, On recursive estimation in incomplete data models. Statistics 34 (2000) 27–51 (English). [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.