Free Access
Issue
ESAIM: PS
Volume 8, August 2004
Page(s) 12 - 24
DOI https://doi.org/10.1051/ps:2003016
Published online 15 September 2004
  1. A.C. Atkinson and A.N. Donev, Optimum Experimental Designs. Clarendon Press, Oxford (1992). [Google Scholar]
  2. C.L. Atwood, Sequences converging to D-optimal designs of experiments. Ann. Statist. 1 (1973) 342-352. [CrossRef] [MathSciNet] [Google Scholar]
  3. C.L. Atwood, Convergent design sequences, for sufficiently regular optimality criteria. Ann. Statist. 4 (1976) 1124-1138. [CrossRef] [MathSciNet] [Google Scholar]
  4. D. Böhning, A vertex-exchange-method in D-optimal design theory. Metrika 33 (1986) 337-347. [CrossRef] [MathSciNet] [Google Scholar]
  5. R. Cominetti, Metric regularity, tangent sets, and second-order optimality conditions. Appl. Math. Optim. 21 (1990) 265-287. [CrossRef] [MathSciNet] [Google Scholar]
  6. D. Cook and V. Fedorov, Constrained optimization of experimental design. Statistics 26 (1995) 129-178. [CrossRef] [MathSciNet] [Google Scholar]
  7. D.J. Daley and D. Vere–Jones, An Introduction to the Theory of Point Processes. Springer, New York (1988). [Google Scholar]
  8. N. Dunford and J.T. Schwartz, Linear Operators. Part I: General Theory. Wiley, New York (1988). [Google Scholar]
  9. V.V. Fedorov, Theory of Optimal Experiments. Academic Press, New York (1972). [Google Scholar]
  10. V.V. Fedorov, Optimal design with bounded density: Optimization algorithms of the exchange type. J. Statist. Plan. Inf. 22 (1989) 1-13. [CrossRef] [Google Scholar]
  11. V.V. Fedorov and P. Hackl, Model-Oriented Design of Experiments. Springer, New York, Lecture Notes in Statist. 125 (1997). [Google Scholar]
  12. I. Ford, Optimal Static and Sequential Design: A Critical Review, Ph.D. Thesis. Department of Statistics, University of Glasgow, Glasgow (1976). [Google Scholar]
  13. A. Gaivoronski, Linearization methods for optimization of functionals which depend on probability measures. Math. Progr. Study 28 (1986) 157-181. [Google Scholar]
  14. N. Gaffke and R. Mathar, On a Class of Algorithms from Experimental Design Theory. Optimization 24 (1992) 91-126. [CrossRef] [MathSciNet] [Google Scholar]
  15. E. Hille and R.S. Phillips, Functional Analysis and Semigroups. American Mathematical Society, Providence, AMS Colloquium Publications XXXI (1957). [Google Scholar]
  16. J. Kiefer, General equivalence theory for optimum designs (approximate theory). Ann. Statist. 2 (1974) 849-879. [CrossRef] [MathSciNet] [Google Scholar]
  17. J. Kiefer and J. Wolfowitz, The equivalence of two extremal problems. Canad. J. Math. 14 (1960) 363-366. [CrossRef] [Google Scholar]
  18. P. Kumaravelu, L. Hook, A.M. Morrison, J. Ure, S. Zhao, S. Zuyev, J. Ansell and A. Medvinsky, Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): Role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development 129 (2002) 4891-4899. [PubMed] [Google Scholar]
  19. E.P. Liski, N.K. Mandal, K.R. Shah and B.K. Singha, Topics in Optimal Design. Springer, New York, Lect. Notes Statist. 163 (2002). [Google Scholar]
  20. H. Maurer and J. Zowe, First and second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems. Math. Programming 16 (1979) 98-110. [CrossRef] [MathSciNet] [Google Scholar]
  21. I. Molchanov and S. Zuyev, Steepest descent algorithms in space of measures. Statist. and Comput. 12 (2002) 115-123. [CrossRef] [Google Scholar]
  22. I. Molchanov and S. Zuyev, Tangent sets in the space of measures: With applications to variational calculus. J. Math. Anal. Appl. 249 (2000) 539-552. [CrossRef] [MathSciNet] [Google Scholar]
  23. I. Molchanov and S. Zuyev, Variational analysis of functionals of a Poisson process. Math. Oper. Res. 25 (2000) 485-508. [CrossRef] [MathSciNet] [Google Scholar]
  24. C.H. Müller and A. Pázman, Applications of necessary and sufficient conditions for maximin efficient designs. Metrika 48 (1998) 1-19. [MathSciNet] [Google Scholar]
  25. A. Pázman, Hilbert-space methods in experimantal design. Kybernetika 14 (1978) 73-84. [MathSciNet] [Google Scholar]
  26. E. Polak, Optimization. Algorithms and Consistent Approximations. Springer, New York (1997). [Google Scholar]
  27. F. Pukelsheim, Optimal Design of Experiments. Wiley, New York (1993). [Google Scholar]
  28. S.M. Robinson, First order conditions for general nonlinear optimization. SIAM J. Appl. Math. 30 (1976) 597-607. [CrossRef] [MathSciNet] [Google Scholar]
  29. S.D. Silvey, Optimum Design. Chapman & Hall, London (1980). [Google Scholar]
  30. D. Stoyan, W.S. Kendall and J. Mecke, Stochastic Geometry and its Applications, Second Edition. Wiley, Chichester (1995). [Google Scholar]
  31. P. Whittle, Some general points in the theory of optimal experimental design. J. Roy. Statist. Soc. Ser. B 35 (1973) 123-130. [MathSciNet] [Google Scholar]
  32. G. Winkler, Extreme points of moment sets. Math. Oper. Res. 13 (1988) 581-587. [CrossRef] [MathSciNet] [Google Scholar]
  33. C.-F. Wu, Some algorithmic aspects of the theory of optimal design. Ann. Statist. 6 (1978) 1286-1301. [CrossRef] [MathSciNet] [Google Scholar]
  34. C.-F. Wu, Some iterative procedures for generating nonsingular optimal designs. Comm. Statist. Theory Methods A 7 (1978) 1399-1412. [CrossRef] [Google Scholar]
  35. C.-F. Wu and H.P. Wynn, The convergence of general step-length algorithms for regular optimum design criteria. Ann. Statist. 6 (1978) 1273-1285. [CrossRef] [MathSciNet] [Google Scholar]
  36. H.P. Wynn, The sequential generation of D-optimum experimental designs. Ann. Math. Statist. 41 (1970) 1655-1664. [CrossRef] [MathSciNet] [Google Scholar]
  37. H.P. Wynn, Results in the theory and construction of D-optimum experimental designs. J. Roy. Statist. Soc. Ser. B 34 (1972) 133-147. [MathSciNet] [Google Scholar]
  38. J. Zowe and S. Kurcyusz, Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5 (1979) 49-62. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.