Free Access
Volume 8, August 2004
Page(s) 12 - 24
Published online 15 September 2004
  1. A.C. Atkinson and A.N. Donev, Optimum Experimental Designs. Clarendon Press, Oxford (1992).
  2. C.L. Atwood, Sequences converging to D-optimal designs of experiments. Ann. Statist. 1 (1973) 342-352. [CrossRef] [MathSciNet]
  3. C.L. Atwood, Convergent design sequences, for sufficiently regular optimality criteria. Ann. Statist. 4 (1976) 1124-1138. [CrossRef] [MathSciNet]
  4. D. Böhning, A vertex-exchange-method in D-optimal design theory. Metrika 33 (1986) 337-347. [CrossRef] [MathSciNet]
  5. R. Cominetti, Metric regularity, tangent sets, and second-order optimality conditions. Appl. Math. Optim. 21 (1990) 265-287. [CrossRef] [MathSciNet]
  6. D. Cook and V. Fedorov, Constrained optimization of experimental design. Statistics 26 (1995) 129-178. [CrossRef] [MathSciNet]
  7. D.J. Daley and D. Vere–Jones, An Introduction to the Theory of Point Processes. Springer, New York (1988).
  8. N. Dunford and J.T. Schwartz, Linear Operators. Part I: General Theory. Wiley, New York (1988).
  9. V.V. Fedorov, Theory of Optimal Experiments. Academic Press, New York (1972).
  10. V.V. Fedorov, Optimal design with bounded density: Optimization algorithms of the exchange type. J. Statist. Plan. Inf. 22 (1989) 1-13. [CrossRef]
  11. V.V. Fedorov and P. Hackl, Model-Oriented Design of Experiments. Springer, New York, Lecture Notes in Statist. 125 (1997).
  12. I. Ford, Optimal Static and Sequential Design: A Critical Review, Ph.D. Thesis. Department of Statistics, University of Glasgow, Glasgow (1976).
  13. A. Gaivoronski, Linearization methods for optimization of functionals which depend on probability measures. Math. Progr. Study 28 (1986) 157-181.
  14. N. Gaffke and R. Mathar, On a Class of Algorithms from Experimental Design Theory. Optimization 24 (1992) 91-126. [CrossRef] [MathSciNet]
  15. E. Hille and R.S. Phillips, Functional Analysis and Semigroups. American Mathematical Society, Providence, AMS Colloquium Publications XXXI (1957).
  16. J. Kiefer, General equivalence theory for optimum designs (approximate theory). Ann. Statist. 2 (1974) 849-879. [CrossRef] [MathSciNet]
  17. J. Kiefer and J. Wolfowitz, The equivalence of two extremal problems. Canad. J. Math. 14 (1960) 363-366. [CrossRef]
  18. P. Kumaravelu, L. Hook, A.M. Morrison, J. Ure, S. Zhao, S. Zuyev, J. Ansell and A. Medvinsky, Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): Role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development 129 (2002) 4891-4899. [PubMed]
  19. E.P. Liski, N.K. Mandal, K.R. Shah and B.K. Singha, Topics in Optimal Design. Springer, New York, Lect. Notes Statist. 163 (2002).
  20. H. Maurer and J. Zowe, First and second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems. Math. Programming 16 (1979) 98-110. [CrossRef] [MathSciNet]
  21. I. Molchanov and S. Zuyev, Steepest descent algorithms in space of measures. Statist. and Comput. 12 (2002) 115-123. [CrossRef]
  22. I. Molchanov and S. Zuyev, Tangent sets in the space of measures: With applications to variational calculus. J. Math. Anal. Appl. 249 (2000) 539-552. [CrossRef] [MathSciNet]
  23. I. Molchanov and S. Zuyev, Variational analysis of functionals of a Poisson process. Math. Oper. Res. 25 (2000) 485-508. [CrossRef] [MathSciNet]
  24. C.H. Müller and A. Pázman, Applications of necessary and sufficient conditions for maximin efficient designs. Metrika 48 (1998) 1-19. [MathSciNet]
  25. A. Pázman, Hilbert-space methods in experimantal design. Kybernetika 14 (1978) 73-84. [MathSciNet]
  26. E. Polak, Optimization. Algorithms and Consistent Approximations. Springer, New York (1997).
  27. F. Pukelsheim, Optimal Design of Experiments. Wiley, New York (1993).
  28. S.M. Robinson, First order conditions for general nonlinear optimization. SIAM J. Appl. Math. 30 (1976) 597-607. [CrossRef] [MathSciNet]
  29. S.D. Silvey, Optimum Design. Chapman & Hall, London (1980).
  30. D. Stoyan, W.S. Kendall and J. Mecke, Stochastic Geometry and its Applications, Second Edition. Wiley, Chichester (1995).
  31. P. Whittle, Some general points in the theory of optimal experimental design. J. Roy. Statist. Soc. Ser. B 35 (1973) 123-130. [MathSciNet]
  32. G. Winkler, Extreme points of moment sets. Math. Oper. Res. 13 (1988) 581-587. [CrossRef] [MathSciNet]
  33. C.-F. Wu, Some algorithmic aspects of the theory of optimal design. Ann. Statist. 6 (1978) 1286-1301. [CrossRef] [MathSciNet]
  34. C.-F. Wu, Some iterative procedures for generating nonsingular optimal designs. Comm. Statist. Theory Methods A 7 (1978) 1399-1412. [CrossRef]
  35. C.-F. Wu and H.P. Wynn, The convergence of general step-length algorithms for regular optimum design criteria. Ann. Statist. 6 (1978) 1273-1285. [CrossRef] [MathSciNet]
  36. H.P. Wynn, The sequential generation of D-optimum experimental designs. Ann. Math. Statist. 41 (1970) 1655-1664. [CrossRef] [MathSciNet]
  37. H.P. Wynn, Results in the theory and construction of D-optimum experimental designs. J. Roy. Statist. Soc. Ser. B 34 (1972) 133-147. [MathSciNet]
  38. J. Zowe and S. Kurcyusz, Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5 (1979) 49-62. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.