Free Access
Volume 8, August 2004
Page(s) 66 - 75
Published online 15 September 2004
  1. S. Asmussen, Applied probability and queues. Wiley, New York (1987). [Google Scholar]
  2. S. Asmussen, Matrix-analytic models and their analysis. Scand. J. Statist. 27 (2000) 193–226. [CrossRef] [MathSciNet] [Google Scholar]
  3. T. Aven and U. Jensen, Stochastic models in reliability. Springer, New York (1999). [Google Scholar]
  4. R.E. Barlow and F. Proschan, Mathematical theory of reliability. SIAM, Philadelphia (1996). [Google Scholar]
  5. U.N. Bhat, Elements of applied stochastic processes. Wiley, New York (1984). [Google Scholar]
  6. D. Chauveau and J. Diébolt, An automated stopping rule for MCMC convergence assessment. Comput. Statist. 14 (1999) 419–442. [CrossRef] [MathSciNet] [Google Scholar]
  7. C. Cocozza-Thivent, Processus stochatisques et fiablité des systèmes. Springer, Paris (1997). [Google Scholar]
  8. R.M. Dudley, Real analysis and probability. Chapman and Hall, London (1989). [Google Scholar]
  9. S.N. Ethier and T.G. Kurtz, Markov processes: characterization and convergence. Wiley, New York (1986). [Google Scholar]
  10. M.G. Hahn, Central limit theorem in D[0,1]. Z. Wahrsch. Verw. Geb 44 (1978) 89–101. [CrossRef] [Google Scholar]
  11. A. Hølyand and M. Rausand, System reliability theory: models and statistical methods. Wiley, New York (1994). [Google Scholar]
  12. M.F. Neuts, Structured stochastic matrices of M/G/1 type and their applications. Dekker, New York (1989). [Google Scholar]
  13. M.F. Neuts, Matrix-geometric solutions in stochastic models: an algorithmic approach. Dover, New York (1994). [Google Scholar]
  14. H. Pham, A. Suprasad and R.B. Misra, Reliability analysis of k-out-of-n systems with partially repairable multi-state components. Microelectron. Reliab. 36 (1996) 1407–1415. [CrossRef] [Google Scholar]
  15. D. Pollard, Convergence of stochastic processes. Springer, New York (1984). [Google Scholar]
  16. R.-D. Reiss, Approximate distributions of order statistics, with application to non-parametric statistics. Springer, New York (1989). [Google Scholar]
  17. H.C. Tijms, Stochastic models: an algorithmic approach. Wiley, Chichester (1994). [Google Scholar]
  18. W. Whitt, Some useful functions for functional limit theorems. Math. Oper. Res. 5 (1980) 67–85. [CrossRef] [MathSciNet] [Google Scholar]
  19. B. Ycart, Cutoff for samples of Markov chains. ESAIM: PS 3 (1999) 89–107. [CrossRef] [EDP Sciences] [Google Scholar]
  20. B. Ycart, Stopping tests for Monte-Carlo Markov chain methods. Meth. Comp. Appl. Probab. 2 (2000) 23–36. [CrossRef] [Google Scholar]
  21. B. Ycart, Cutoff for Markov chains: some examples and applications. in Complex Systems, E. Goles and S. Martínez Eds., Kluwer, Dordrecht (2001) 261–300. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.