Free Access
Issue
ESAIM: PS
Volume 8, August 2004
Page(s) 66 - 75
DOI https://doi.org/10.1051/ps:2004002
Published online 15 September 2004
  1. S. Asmussen, Applied probability and queues. Wiley, New York (1987).
  2. S. Asmussen, Matrix-analytic models and their analysis. Scand. J. Statist. 27 (2000) 193–226. [CrossRef] [MathSciNet]
  3. T. Aven and U. Jensen, Stochastic models in reliability. Springer, New York (1999).
  4. R.E. Barlow and F. Proschan, Mathematical theory of reliability. SIAM, Philadelphia (1996).
  5. U.N. Bhat, Elements of applied stochastic processes. Wiley, New York (1984).
  6. D. Chauveau and J. Diébolt, An automated stopping rule for MCMC convergence assessment. Comput. Statist. 14 (1999) 419–442. [CrossRef] [MathSciNet]
  7. C. Cocozza-Thivent, Processus stochatisques et fiablité des systèmes. Springer, Paris (1997).
  8. R.M. Dudley, Real analysis and probability. Chapman and Hall, London (1989).
  9. S.N. Ethier and T.G. Kurtz, Markov processes: characterization and convergence. Wiley, New York (1986).
  10. M.G. Hahn, Central limit theorem in D[0,1]. Z. Wahrsch. Verw. Geb 44 (1978) 89–101. [CrossRef]
  11. A. Hølyand and M. Rausand, System reliability theory: models and statistical methods. Wiley, New York (1994).
  12. M.F. Neuts, Structured stochastic matrices of M/G/1 type and their applications. Dekker, New York (1989).
  13. M.F. Neuts, Matrix-geometric solutions in stochastic models: an algorithmic approach. Dover, New York (1994).
  14. H. Pham, A. Suprasad and R.B. Misra, Reliability analysis of k-out-of-n systems with partially repairable multi-state components. Microelectron. Reliab. 36 (1996) 1407–1415. [CrossRef]
  15. D. Pollard, Convergence of stochastic processes. Springer, New York (1984).
  16. R.-D. Reiss, Approximate distributions of order statistics, with application to non-parametric statistics. Springer, New York (1989).
  17. H.C. Tijms, Stochastic models: an algorithmic approach. Wiley, Chichester (1994).
  18. W. Whitt, Some useful functions for functional limit theorems. Math. Oper. Res. 5 (1980) 67–85. [CrossRef] [MathSciNet]
  19. B. Ycart, Cutoff for samples of Markov chains. ESAIM: PS 3 (1999) 89–107. [CrossRef] [EDP Sciences]
  20. B. Ycart, Stopping tests for Monte-Carlo Markov chain methods. Meth. Comp. Appl. Probab. 2 (2000) 23–36. [CrossRef]
  21. B. Ycart, Cutoff for Markov chains: some examples and applications. in Complex Systems, E. Goles and S. Martínez Eds., Kluwer, Dordrecht (2001) 261–300.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.