Free Access
Issue
ESAIM: PS
Volume 7, March 2003
Page(s) 1 - 21
DOI https://doi.org/10.1051/ps:2003004
Published online 15 May 2003
  1. M.A. Arcones, The law of the iterated logarithm for a triangular array of empirical processes. Electron. J. Probab. 2 (1997) 1-39.
  2. A. Berlinet, A. Gannoun and E. Matzner-Loeber, Normalité asymptotique d'estimateurs convergents du mode conditionnel. Can. J. Statist. 26 (1998) 365-380. [CrossRef]
  3. H. Chernoff, Estimation of the mode. Ann. Inst. Stat. Math. 16 (1964) 31-41. [CrossRef]
  4. G. Collomb, W. Härdle and S. Hassani, A note on prediction via estimation of the conditional mode function. J. Statist. Planning Inference 15 (1987) 227-236. [CrossRef]
  5. W.F. Eddy, Optimum kernel estimates of the mode. Ann. Statist. 8 (1980) 870-882. [CrossRef] [MathSciNet]
  6. W.F. Eddy, The asymptotic distributions of kernel estimators of the mode. Z. Warsch. Verw. Geb. 59 (1982) 279-290. [CrossRef]
  7. U. Einmahl and D.M. Mason, An empirical process approach to the uniform consistency of kernel-type functions estimators. J. Theoret. Probab. 13 (2000) 1-37. [CrossRef] [MathSciNet]
  8. E. Giné and A. Guillou, Rates of strong uniform consistency for multivariate kernel density estimators, Preprint. Paris VI (2000).
  9. U. Grenander, Some direct estimates of the mode. Ann. Math. Statist. 36 (1965) 131-138. [CrossRef] [MathSciNet]
  10. B. Grund and P. Hall, On the minimisation of Lp error in mode estimation. Ann. Statist. 23 (1995) 2264-2284. [CrossRef] [MathSciNet]
  11. P. Hall, Laws of the iterated logarithm for nonparametric density estimators. Z. Warsch. Verw. Geb. 56 (1981) 47-61. [CrossRef]
  12. P. Hall, Asymptotic theory of Grenander's mode estimator. Z. Warsch. Verw. Geb. 60 (1982) 315-334. [CrossRef]
  13. V.D. Konakov, On asymptotic normality of the sample mode of multivariate distributions. Theory Probab. Appl. 18 (1973) 836-842.
  14. J. Leclerc and D. Pierre-Loti-Viaud, Vitesse de convergence presque sûre de l'estimateur à noyau du mode. C. R. Acad. Sci. Paris Sér. I Math. 331 (2000) 637-640.
  15. D. Louani and E. Ould-Said, Asymptotic normality of kernel estimators of the conditional mode under strong mixing hypothesis. J. Nonparametr. Statist. 11 (1999) 413-442. [CrossRef] [MathSciNet]
  16. A. Mokkadem and M. Pelletier, A law of the iterated logarithm for the kernel mode estimator. Statist. Probab. Lett. (submitted).
  17. E.A. Nadaraya, On non-parametric estimates of density functions and regression curves. Theory Probab. Appl. 10 (1965) 186-190. [CrossRef]
  18. E. Ould-Said, A note on ergodic processes prediction via estimation of the conditional mode function. Scand. J. Stat. 24 (1997) 231-239. [CrossRef]
  19. E. Parzen, On estimating probability density function and mode. Ann. Math. Statist. 33 (1962) 1065-1076. [NASA ADS] [CrossRef] [MathSciNet]
  20. D. Pollard, Convergence of Stochastic Processes. Springer, New York (1984).
  21. A. Quintela-Del-Rio and P. Vieu, A nonparametric conditional mode estimate. J. Nonparametr. Statist. 8 (1997) 253-266. [CrossRef] [MathSciNet]
  22. J. Romano, On weak convergence and optimality of kernel density estimates of the mode. Ann. Statist. 16 (1988) 629-647. [CrossRef] [MathSciNet]
  23. L. Rüschendorf, Consistency of estimators for multivariate density functions and for the mode. Sankhya Ser. A 39 (1977) 243-250. [MathSciNet]
  24. T.W. Sager, Consistency in nonparametric estimation of the mode. Ann. Statist. 3 (1975) 698-706. [MathSciNet]
  25. M. Samanta, Nonparametric estimation of the mode of a multivariate density. South African Statist. J. 7 (1973) 109-117. [MathSciNet]
  26. M. Samanta and A. Thavaneswaran, Nonparametric estimation of the conditional mode. Commun Stat., Theory Methods 19 (1990) 4515-4524.
  27. A.B. Tsybakov, Recurrent estimation of the mode of a multidimensional distribution. Problems Inform. Transmission 26 (1990) 31-37. [MathSciNet]
  28. J. Van Ryzin, On strong consistency of density estimates. Ann. Math. Statist. 40 (1969) 1765-1772. [CrossRef] [MathSciNet]
  29. J.H. Venter, On estimation of the mode. Ann. Math. Statist. 38 (1967) 1446-1455. [CrossRef] [MathSciNet]
  30. P. Vieu, A note on density mode estimation. Statist. Probab. Lett. 26 (1996) 297-307. [CrossRef] [MathSciNet]
  31. H. Yamato, Sequential estimation of a continuous probability density function and the mode. Bull. Math. Statist. 14 (1971) 1-12.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.