Free Access
Issue
ESAIM: PS
Volume 7, March 2003
Page(s) 1 - 21
DOI https://doi.org/10.1051/ps:2003004
Published online 15 May 2003
  1. M.A. Arcones, The law of the iterated logarithm for a triangular array of empirical processes. Electron. J. Probab. 2 (1997) 1-39. [Google Scholar]
  2. A. Berlinet, A. Gannoun and E. Matzner-Loeber, Normalité asymptotique d'estimateurs convergents du mode conditionnel. Can. J. Statist. 26 (1998) 365-380. [CrossRef] [Google Scholar]
  3. H. Chernoff, Estimation of the mode. Ann. Inst. Stat. Math. 16 (1964) 31-41. [CrossRef] [Google Scholar]
  4. G. Collomb, W. Härdle and S. Hassani, A note on prediction via estimation of the conditional mode function. J. Statist. Planning Inference 15 (1987) 227-236. [CrossRef] [Google Scholar]
  5. W.F. Eddy, Optimum kernel estimates of the mode. Ann. Statist. 8 (1980) 870-882. [CrossRef] [MathSciNet] [Google Scholar]
  6. W.F. Eddy, The asymptotic distributions of kernel estimators of the mode. Z. Warsch. Verw. Geb. 59 (1982) 279-290. [CrossRef] [Google Scholar]
  7. U. Einmahl and D.M. Mason, An empirical process approach to the uniform consistency of kernel-type functions estimators. J. Theoret. Probab. 13 (2000) 1-37. [CrossRef] [MathSciNet] [Google Scholar]
  8. E. Giné and A. Guillou, Rates of strong uniform consistency for multivariate kernel density estimators, Preprint. Paris VI (2000). [Google Scholar]
  9. U. Grenander, Some direct estimates of the mode. Ann. Math. Statist. 36 (1965) 131-138. [CrossRef] [MathSciNet] [Google Scholar]
  10. B. Grund and P. Hall, On the minimisation of Lp error in mode estimation. Ann. Statist. 23 (1995) 2264-2284. [CrossRef] [MathSciNet] [Google Scholar]
  11. P. Hall, Laws of the iterated logarithm for nonparametric density estimators. Z. Warsch. Verw. Geb. 56 (1981) 47-61. [CrossRef] [Google Scholar]
  12. P. Hall, Asymptotic theory of Grenander's mode estimator. Z. Warsch. Verw. Geb. 60 (1982) 315-334. [CrossRef] [Google Scholar]
  13. V.D. Konakov, On asymptotic normality of the sample mode of multivariate distributions. Theory Probab. Appl. 18 (1973) 836-842. [Google Scholar]
  14. J. Leclerc and D. Pierre-Loti-Viaud, Vitesse de convergence presque sûre de l'estimateur à noyau du mode. C. R. Acad. Sci. Paris Sér. I Math. 331 (2000) 637-640. [Google Scholar]
  15. D. Louani and E. Ould-Said, Asymptotic normality of kernel estimators of the conditional mode under strong mixing hypothesis. J. Nonparametr. Statist. 11 (1999) 413-442. [CrossRef] [MathSciNet] [Google Scholar]
  16. A. Mokkadem and M. Pelletier, A law of the iterated logarithm for the kernel mode estimator. Statist. Probab. Lett. (submitted). [Google Scholar]
  17. E.A. Nadaraya, On non-parametric estimates of density functions and regression curves. Theory Probab. Appl. 10 (1965) 186-190. [Google Scholar]
  18. E. Ould-Said, A note on ergodic processes prediction via estimation of the conditional mode function. Scand. J. Stat. 24 (1997) 231-239. [CrossRef] [Google Scholar]
  19. E. Parzen, On estimating probability density function and mode. Ann. Math. Statist. 33 (1962) 1065-1076. [CrossRef] [Google Scholar]
  20. D. Pollard, Convergence of Stochastic Processes. Springer, New York (1984). [Google Scholar]
  21. A. Quintela-Del-Rio and P. Vieu, A nonparametric conditional mode estimate. J. Nonparametr. Statist. 8 (1997) 253-266. [CrossRef] [MathSciNet] [Google Scholar]
  22. J. Romano, On weak convergence and optimality of kernel density estimates of the mode. Ann. Statist. 16 (1988) 629-647. [CrossRef] [MathSciNet] [Google Scholar]
  23. L. Rüschendorf, Consistency of estimators for multivariate density functions and for the mode. Sankhya Ser. A 39 (1977) 243-250. [MathSciNet] [Google Scholar]
  24. T.W. Sager, Consistency in nonparametric estimation of the mode. Ann. Statist. 3 (1975) 698-706. [MathSciNet] [Google Scholar]
  25. M. Samanta, Nonparametric estimation of the mode of a multivariate density. South African Statist. J. 7 (1973) 109-117. [MathSciNet] [Google Scholar]
  26. M. Samanta and A. Thavaneswaran, Nonparametric estimation of the conditional mode. Commun Stat., Theory Methods 19 (1990) 4515-4524. [Google Scholar]
  27. A.B. Tsybakov, Recurrent estimation of the mode of a multidimensional distribution. Problems Inform. Transmission 26 (1990) 31-37. [MathSciNet] [Google Scholar]
  28. J. Van Ryzin, On strong consistency of density estimates. Ann. Math. Statist. 40 (1969) 1765-1772. [CrossRef] [MathSciNet] [Google Scholar]
  29. J.H. Venter, On estimation of the mode. Ann. Math. Statist. 38 (1967) 1446-1455. [CrossRef] [MathSciNet] [Google Scholar]
  30. P. Vieu, A note on density mode estimation. Statist. Probab. Lett. 26 (1996) 297-307. [CrossRef] [MathSciNet] [Google Scholar]
  31. H. Yamato, Sequential estimation of a continuous probability density function and the mode. Bull. Math. Statist. 14 (1971) 1-12. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.