Issue
ESAIM: PS
Volume 6, 2002
New directions in Time Series Analysis (Guest Editor: Philippe Soulier)
Page(s) 211 - 238
Section New directions in Time Series Analysis (Guest Editor: Philippe Soulier)
DOI https://doi.org/10.1051/ps:2002012
Published online 15 November 2002
  1. G. Banon, Nonparametric identification for diffusion processes. SIAM J. Control Optim. 16 (1978) 380-395. [CrossRef] [MathSciNet]
  2. G. Banon and H.T. N'Guyen, Recursive estimation in diffusion model. SIAM J. Control Optim. 19 (1981) 676-685. [CrossRef] [MathSciNet]
  3. A.R. Barron, L. Birgé and P. Massart, Risk bounds for model selection via penalization. Probab. Theory Related Fields 113 (1999) 301-413. [CrossRef] [MathSciNet]
  4. H.C.P Berbee, Random walks with stationary increments and renewal theory. Cent. Math. Tracts, Amsterdam (1979).
  5. L. Birgé and P. Massart, From model selection to adaptive estimation, in Festschrift for Lucien Le Cam: Research Papers in Probability and Statistics, edited by D. Pollard, E. Torgersen and G. Yang. Springer-Verlag, New-York (1997) 55-87.
  6. L. Birgé and P. Massart, Minimum contrast estimators on sieves: Exponential bounds and rates of convergence. Bernoulli 4 (1998) 329-375. [CrossRef] [MathSciNet]
  7. L. Birgé and P. Massart, An adaptive compression algorithm in Besov spaces. Constr. Approx. 16 (2000) 1-36. [CrossRef] [MathSciNet]
  8. L. Birgé and Y. Rozenholc, How many bins must be put in a regular histogram? Preprint LPMA 721, http://www.proba.jussieu.fr/mathdoc/preprints/index.html (2002).
  9. D. Bosq, Parametric rates of nonparametric estimators and predictors for continuous time processes. Ann. Stat. 25 (1997) 982-1000. [CrossRef]
  10. D. Bosq, Nonparametric Statistics for Stochastic Processes. Estimation and Prediction, Second Edition. Springer Verlag, New-York, Lecture Notes in Statist. 110 (1998).
  11. D. Bosq and Yu. Davydov, Local time and density estimation in continuous time. Math. Methods Statist. 8 (1999) 22-45. [MathSciNet]
  12. W. Bryc, On the approximation theorem of Berkes and Philipp. Demonstratio Math. 15 (1982) 807-815. [MathSciNet]
  13. C. Butucea, Exact adaptive pointwise estimation on Sobolev classes of densities. ESAIM: P&S 5 (2001) 1-31. [CrossRef] [EDP Sciences]
  14. J.V. Castellana and M.R. Leadbetter, On smoothed probability density estimation for stationary processes. Stochastic Process. Appl. 21 (1986) 179-193. [CrossRef] [MathSciNet]
  15. S. Clémençon, Adaptive estimation of the transition density of a regular Markov chain. Math. Methods Statist. 9 (2000) 323-357. [MathSciNet]
  16. A. Cohen, I. Daubechies and P. Vial, Wavelet and fast wavelet transform on an interval. Appl. Comput. Harmon. Anal. 1 (1993) 54-81. [CrossRef] [MathSciNet]
  17. F. Comte and F. Merlevède, Density estimation for a class of continuous time or discretely observed processes. Preprint MAP5 2002-2, http://www.math.infor.univ-paris5.fr/map5/ (2002).
  18. F. Comte and Y. Rozenholc, Adaptive estimation of mean and volatility functions in (auto-)regressive models. Stochastic Process. Appl. 97 (2002) 111-145. [CrossRef] [MathSciNet]
  19. I. Daubechies, Ten lectures on wavelets. SIAM: Philadelphia (1992).
  20. B. Delyon, Limit theorem for mixing processes, Technical Report IRISA. Rennes (1990) 546.
  21. R.A. DeVore and G.G. Lorentz, Constructive approximation. Springer-Verlag (1993).
  22. D.L. Donoho and I.M. Johnstone, Minimax estimation with wavelet shrinkage. Ann. Statist. 26 (1998) 879-921. [CrossRef] [MathSciNet] [PubMed]
  23. D.L. Donoho, I.M. Johnstone, G. Kerkyacharian and D. Picard, Density estimation by wavelet thresholding. Ann. Statist. 24 (1996) 508-539. [CrossRef] [MathSciNet]
  24. P. Doukhan, Mixing properties and examples. Springer-Verlag, Lecture Notes in Statist. (1995).
  25. Y. Efromovich, Nonparametric estimation of a density of unknown smoothness. Theory Probab. Appl. 30 (1985) 557-661. [CrossRef]
  26. Y. Efromovich and M.S. Pinsker, Learning algorithm for nonparametric filtering. Automat. Remote Control 11 (1984) 1434-1440.
  27. G. Kerkyacharian, D. Picard and K. Tribouley, Formula adaptive density estimation. Bernoulli 2 (1996) 229-247. [MathSciNet]
  28. A.N. Kolmogorov and Y.A. Rozanov, On the strong mixing conditions for stationary Gaussian sequences. Theory Probab. Appl. 5 (1960) 204-207. [CrossRef]
  29. Y.A. Kutoyants, Efficient density estimation for ergodic diffusion processes. Stat. Inference Stoch. Process. 1 (1998) 131-155. [CrossRef]
  30. F. Leblanc, Density estimation for a class of continuous time processes. Math. Methods Statist. 6 (1997) 171-199. [MathSciNet]
  31. H.T. N'Guyen, Density estimation in a continuous-time stationary Markov process. Ann. Statist. 7 (1979) 341-348. [CrossRef] [MathSciNet]
  32. E. Rio, The functional law of the iterated logarithm for stationary strongly mixing sequences. Ann. Probab. 23 (1995) 1188-1203. [CrossRef] [MathSciNet]
  33. M. Rosenblatt, A central limit theorem and a strong mixing condition. Proc. Nat. Acad. Sci. USA 42 (1956) 43-47. [CrossRef]
  34. M. Talagrand, New concentration inequalities in product spaces. Invent. Math. 126 (1996) 505-563. [CrossRef] [MathSciNet]
  35. K. Tribouley and G. Viennet, Formula adaptive density estimation in a Formula -mixing framework. Ann. Inst. H. Poincaré 34 (1998) 179-208. [CrossRef] [MathSciNet]
  36. A.Yu. Veretennikov, On hypoellipticity conditions and estimates of the mixing rate for stochastic differential equations. Soviet Math. Dokl. 40 (1990) 94-97. [MathSciNet]
  37. G. Viennet, Inequalities for absolutely regular sequences: Application to density estimation. Probab. Theory Related Fields 107 (1997) 467-492. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.