Free Access
Volume 4, 2000
Page(s) 205 - 227
Published online 15 August 2002
  1. O.E. Barndorff-Nielsen and N. Shephard, Aggregation and model construction for volatility models. Working paper series No. 10. Center for Analytical Finance, University of Aarhus (1998). [Google Scholar]
  2. G. Dohnal, On estimating the diffusion coefficient. J. Appl. Probab. 24 (1987) 105-114. [CrossRef] [MathSciNet] [Google Scholar]
  3. V. Genon-Catalot and J. Jacod, On the estimation of the diffusion coefficient for multidimensional diffusion processes. Ann. Inst. H. Poincaré Probab. Statist. 29 (1993) 119-151. [MathSciNet] [Google Scholar]
  4. V. Genon-Catalot, T. Jeantheau and C. Laredo, Limit theorems for discretely observed stochastic volatility models. Bernoulli 4 (1998) 283-303. [CrossRef] [MathSciNet] [Google Scholar]
  5. A. Gloter, Parameter estimation for a discrete sampling of an integrated Ornstein-Uhlenbeck process. Statistics (to appear). [Google Scholar]
  6. J. Hull and A. White, The pricing of options on assets with stochastic volatilities. J. Finance 42 (1987) 281-300. [CrossRef] [Google Scholar]
  7. J. Jacod, On continuous conditional Gaussian martingales and stable convergence in law. Séminaire de Probabilités XXXI. 1655. Springer, Berlin, Lectures Notes in Math. (1997) 232-246. [Google Scholar]
  8. M. Kessler, Estimation of an ergodic diffusion from discrete observations. Scand. J. Statist. 24 (1997) 211-229. [CrossRef] [MathSciNet] [Google Scholar]
  9. B. Leblanc, Modélisation de la Volatilité d'un Actif Financier et Applications. Thèse, Université Paris 7 (1997). [Google Scholar]
  10. M. Lefebvre, On the inverse of the first hitting time problem for bidimensional processes. J. Appl. Probab. 34 (1997) 610-622. [CrossRef] [MathSciNet] [Google Scholar]
  11. S. Pastorello, E. Renault and N. Touzi, Statistical inference for random variance option pricing. Southern European Economics Discussion Series, D.P.136 (1994). [Google Scholar]
  12. D. Revuz and M. Yor, Continuous Martingales and Brownian Motion. Springer-Verlag, Berlin Heidelberg, second edition (1994). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.