Issue |
ESAIM: PS
Volume 4, 2000
|
|
---|---|---|
Page(s) | 1 - 24 | |
DOI | https://doi.org/10.1051/ps:2000101 | |
Published online | 15 August 2002 |
Sharp large deviations for Gaussian quadratic forms with applications
1
Université Paris-Sud,
bâtiment 425, 91405 Orsay Cedex, France;
Bernard.Bercu@math.u-psud.fr.
2
Université Paul Sabatier, Toulouse, France;
Gamboa@cict.fr.
3
Université René Descartes and Université Paris-Sud, France;
Marc.Lavielle@math.u-psud.fr.
Received:
30
January
1998
Revised:
21
December
1998
Revised:
3
November
1999
Under regularity assumptions, we establish a sharp large deviation principle for Hermitian quadratic forms of stationary Gaussian processes. Our result is similar to the well-known Bahadur-Rao theorem [2] on the sample mean. We also provide several examples of application such as the sharp large deviation properties of the Neyman-Pearson likelihood ratio test, of the sum of squares, of the Yule-Walker estimator of the parameter of a stable autoregressive Gaussian process, and finally of the empirical spectral repartition function.
Résumé
Sous des hypothèses de régularité convenables, on établit un principe de grandes déviations précises pour des formes quadratiques de processus gaussiens stationnaires. Notre résultat est l'analogue du théorème de Bahadur-Rao [2] sur la moyenne empirique. Nous proposons également plusieurs exemples d'application comme les propriétés de grandes déviations précises pour le test du rapport de vraisemblance de Neyman-Pearson, pour la somme des carrés, pour l'estimateur de Yule-Walker du paramètre d'un processus gaussien autorégressif stable, et finalement pour la fonction de répartition spectrale empirique.
Mathematics Subject Classification: 60F10 / 11E25 / 60G15 / 47B35
Key words: Large deviations / Gaussian processes / quadratic forms / Toeplitz matrices.
© EDP Sciences, SMAI, 2000
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.