Issue |
ESAIM: PS
Volume 3, 1999
|
|
---|---|---|
Page(s) | 1 - 21 | |
DOI | https://doi.org/10.1051/ps:1999100 | |
Published online | 15 August 2002 |
A Lower Bound on the Growth Exponent for Loop-Erased Random Walk in Two Dimensions
Department of Mathematics, Box 90320,
Duke University
Durham, NC 27708-0320, USA; jose@math.duke.edu.
Received:
10
April
1998
Revised:
21
September
1998
The growth exponent α for loop-erased or Laplacian random walk on the integer lattice is defined by saying that the expected time to reach the sphere of radius n is of order nα. We prove that in two dimensions, the growth exponent is strictly greater than one. The proof uses a known estimate on the third moment of the escape probability and an improvement on the discrete Beurling projection theorem.
Résumé
L'exposant de croissance α pour la marche aléatoire à boucles effacées ou “laplacienne" sur le réseau Zd est défini de la manière suivante : le nombre moyen de pas au moment où la marche issue de l'origine atteint la sphère de rayon n est d'ordre nα lorsque n tend vers l'infini. Nous montrons que lorsque d=2, l'exposant de croissance est strictement supérieur à 1. La preuve utilise une estimation connue concernant le moment d'ordre trois de la probabilité de fuite, ainsi qu'un raffinement de la version discrétisée du théorème de projection de Beurling.
Mathematics Subject Classification: 60J15
Key words: loop-erased walk / Beurling projection theorem
© EDP Sciences, SMAI, 1999
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.