Issue |
ESAIM: PS
Volume 21, 2017
|
|
---|---|---|
Page(s) | 220 - 234 | |
DOI | https://doi.org/10.1051/ps/2017006 | |
Published online | 12 December 2017 |
Tutte’s invariant approach for Brownian motion reflected in the quadrant
1 Laboratoire de Probabilités et Modèles Aléatoires, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris cedex 05, France.
2 Laboratoire de Mathématiques et Physique Théorique, Université de Tours, Parc de Grandmont, 37200 Tours, France.
sandro.franceschi@upmc.fr
3 CNRS & Fédération de recherche Denis Poisson & Laboratoire de Mathématiques et Physique Théorique, Université de Tours, Parc de Grandmont, 37200 Tours, France.
Kilian.Raschel@lmpt.univ-tours.fr
Received: 3 June 2016
Revised: 13 December 2016
Accepted: 13 March 2017
We consider a Brownian motion with negative drift in the quarter plane with orthogonal reflection on the axes. The Laplace transform of its stationary distribution satisfies a functional equation, which is reminiscent from equations arising in the enumeration of (discrete) quadrant walks. We develop a Tutte’s invariant approach to this continuous setting, and we obtain an explicit formula for the Laplace transform in terms of generalized Chebyshev polynomials.
Mathematics Subject Classification: 60C05 / 60J65 / 60E10
Key words: Reflected Brownian motion in the quarter plane / stationary distribution / Laplace transform / Tutte’s invariant approach / generalized Chebyshev polynomials
© EDP Sciences, SMAI, 2017
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.