Issue |
ESAIM: PS
Volume 20, 2016
|
|
---|---|---|
Page(s) | 463 - 479 | |
DOI | https://doi.org/10.1051/ps/2016022 | |
Published online | 30 November 2016 |
Seeking relevant information from a statistical model
1 Centro de Matemática, Universidad de la República, Iguá 4225,
Malvín Norte 11400, Montevideo, Uruguay.
rfraiman@cmat.edu.uy
2 Universidad de San Andrés and Conicet, Vito Dumas 284,
Victoria 1644, Buenos Aires, Argentina.
yanugimenez@gmail.com; msvarc@udesa.edu.ar
Received:
19
December
2014
Revised:
13
June
2016
Accepted:
10
August
2016
We herein introduce a general variable selection procedure, which can be applied to several parametric multivariate problems, including principal components and regression, among others. The aim is to allow the identification of a small subset of the original variables that can ‘better explain’ the model through nonparametric relationships. The method typically yields some noisy uninformative variables and some variables that are strongly related because of their general dependence and our aim is to help understand the underlying structures in a given data–set. The asymptotic behaviour of the proposed method is considered and some real and simulated data–sets are analysed as examples.
Mathematics Subject Classification: 62H30 / 68T10 / 62G20
Key words: Variable selection / regression / principal components analysis
© EDP Sciences, SMAI 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.