Free Access
Volume 13, January 2009
Page(s) 409 - 416
Published online 22 September 2009
  1. N. Bissantz, B. Mair and A. Munk, A statistical stopping rule for MLEM reconstructions in PET. IEEE Nucl. Sci. Symp. Conf. Rec. 8 (2008) 4198–4200.
  2. M. Csörgö and P. Révész, Strong approximations in probability and statistics. Academic Press, New York-San Francisco-London (1981).
  3. P.L. Davies and A. Kovac, Local extremes, runs, strings and multiresolution (with discussion). Ann. Statist. 29 (2001) 1–65. [CrossRef]
  4. P. Deheuvels, On the Erdös-Rényi theorem for random fields and sequences and its relationships with the theory of runs and spacings. Z. Wahrscheinlichkeitstheor. Verw. Geb. 70 (1985) 91–115. [CrossRef]
  5. L. Dümbgen and V.G. Spokoiny, Multiscale testing of qualitative hypotheses. Ann. Statist. 29 (2001) 124–152. [CrossRef] [MathSciNet]
  6. L. Dümbgen and G. Walther, Multiscale inference about a density. Preprint (Extended version: Technical report 56, Univ. of Bern). Ann. Statist. 36 (2008) 1758–1758. [CrossRef]
  7. P. Erdös and A. Rényi, On a new law of large numbers. J. Anal. Math. 23 (1970) 103–111. [CrossRef]
  8. W. Feller, An introduction to probability theory and its applications. Vol. II, second edition. John Wiley and Sons, New York-London-Sydney (1971).
  9. D.L. Hanson and R.P. Russo, Some results on increments of the Wiener process with applications to lag sums of i.i.d. random variables. Ann. Probab. 11 (1983) 609–623. [CrossRef] [MathSciNet]
  10. W. Hinterberger, M. Hintermüller, K. Kunisch, M. von Oehsen and O. Scherzer, Tube methods for BV regularization. J. Math. Imag. Vision 19 (2003) 219–235. [CrossRef]
  11. J. Komlós, P. Major and G. Tusnády, An approximation of partial sums of independent RV's, and the sample DF, Vol. I. Z. Wahrscheinlichkeitstheor. Verw. Geb. 32 (1975) 111–131. [CrossRef]
  12. H. Lanzinger and U. Stadtmüller, Maxima of increments of partial sums for certain subexponential distributions. Stoch. Process. Appl. 86 (2000) 307–322. [CrossRef]
  13. P. Massart, Strong approximation for multivariate empirical and related processes, via KMT constructions. Ann. Probab. 17 (1989) 266–291. [CrossRef] [MathSciNet]
  14. P. Révész, Random walk in random and non-random environments. World Scientific (1990).
  15. E. Rio, Strong approximation for set-indexed partial sum processes via KMT constructions III. ESAIM: PS 1 (1997) 319–338. [CrossRef] [EDP Sciences]
  16. Q.-M. Shao, On a conjecture of Révész. Proc. Amer. Math. Soc. 123 (1995) 575–582. [MathSciNet]
  17. D. Siegmund and B. Yakir, Tail probabilities for the null distribution of scanning statistics. Bernoulli 6 (2000) 191–213. [CrossRef] [MathSciNet]
  18. J. Steinebach, On the increments of partial sum processes with multidimensional indices. Z. Wahrscheinlichkeitstheor. Verw. Geb. 63 (1983) 59–70. [CrossRef]
  19. J. Steinebach, On a conjecture of Révész and its analogue for renewal processes, in Asymptotic methods in probability and statistics, Barbara Szyszkowicz Ed., A volume in honour of Miklós Csörgö. ICAMPS '97, an international conference at Carleton Univ., Ottawa, Canada. Elsevier, North-Holland, Amsterdam (1997).
  20. S. van de Geer and E. Mammen, Discussion of “Local extremes, strings and multiresolution.” Ann. Statist. 29 (2001) 56–59.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.