The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Ismael Bailleul, Albert Raugi
ESAIM: PS, 14 (2010) 16-52
Published online: 2010-02-11
This article has been cited by the following article(s):
Séminaire de Probabilités XLVIII
Jürgen Angst and Camille Tardif
Lecture Notes in Mathematics, Séminaire de Probabilités XLVIII 2168 199 (2016)
DOI: 10.1007/978-3-319-44465-9_8
See this article
A stochastic approach to relativistic diffusions
Ismaël Bailleul
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 46 (3) (2010)
DOI: 10.1214/09-AIHP341
See this article
Nonexplosion criteria for relativistic diffusions
Ismaël Bailleul and Jacques Franchi
The Annals of Probability 40 (5) (2012)
DOI: 10.1214/11-AOP672
See this article
Kinetic Brownian motion on Riemannian manifolds
Jürgen Angst, Ismaël Bailleul and Camille Tardif
Electronic Journal of Probability 20 (none) (2015)
DOI: 10.1214/EJP.v20-4054
See this article
Lyapunov spectrum of a relativistic stochastic flow in the Poincaré group
Camille Tardif
Stochastics and Dynamics 14 (04) 1450013 (2014)
DOI: 10.1142/S0219493714500130
See this article
Relativistic Diffusion in Gödel’s Universe
Jacques Franchi
Communications in Mathematical Physics 290 (2) 523 (2009)
DOI: 10.1007/s00220-009-0845-x
See this article
On the Poisson boundary of the relativistic Brownian motion
Jürgen Angst and Camille Tardif
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 56 (4) (2020)
DOI: 10.1214/20-AIHP1059
See this article
Relativistic Brownian motion
Jörn Dunkel and Peter Hänggi
Physics Reports 471 (1) 1 (2009)
DOI: 10.1016/j.physrep.2008.12.001
See this article
A Poincaré Cone Condition in the Poincaré Group
Camille Tardif
Potential Analysis 38 (3) 1001 (2013)
DOI: 10.1007/s11118-012-9304-y
See this article