Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Fitting Bayesian Stochastic Differential Equation Models with Mixed Effects through a Filtering Approach

Meng Chen, Sy-Miin Chow, Zita Oravecz and Emilio Ferrer
Multivariate Behavioral Research 58 (5) 1014 (2023)
https://doi.org/10.1080/00273171.2023.2171354

Inference in Gaussian state-space models with mixed effects for multiple epidemic dynamics

Romain Narci, Maud Delattre, Catherine Larédo and Elisabeta Vergu
Journal of Mathematical Biology 85 (4) (2022)
https://doi.org/10.1007/s00285-022-01806-3

A review on asymptotic inference in stochastic differential equations with mixed effects

Maud Delattre
Japanese Journal of Statistics and Data Science 4 (1) 543 (2021)
https://doi.org/10.1007/s42081-021-00105-3

On classical and Bayesian asymptotics in state space stochastic differential equations

Trisha Maitra and Sourabh Bhattacharya
Brazilian Journal of Probability and Statistics 34 (3) (2020)
https://doi.org/10.1214/19-BJPS439

Technology, Sustainability and Educational Innovation (TSIE)

Jose Soto and Saba Infante
Advances in Intelligent Systems and Computing, Technology, Sustainability and Educational Innovation (TSIE) 1110 285 (2020)
https://doi.org/10.1007/978-3-030-37221-7_24

Exact Gradients Improve Parameter Estimation in Nonlinear Mixed Effects Models with Stochastic Dynamics

Helga Kristin Olafsdottir, Jacob Leander, Joachim Almquist and Mats Jirstrand
The AAPS Journal 20 (5) (2018)
https://doi.org/10.1208/s12248-018-0232-7

Coupling stochastic EM and approximate Bayesian computation for parameter inference in state-space models

Umberto Picchini and Adeline Samson
Computational Statistics 33 (1) 179 (2018)
https://doi.org/10.1007/s00180-017-0770-y

Approximate maximum likelihood estimation for stochastic differential equations with random effects in the drift and the diffusion

Maud Delattre, Valentine Genon-Catalot and Catherine Larédo
Metrika 81 (8) 953 (2018)
https://doi.org/10.1007/s00184-018-0666-z

Research on Load Spectrum Construction of Bench Test Based on Automotive Proving Ground

Xiaobing Yang, Xintian Liu, Jiachi Tong, Yansong Wang and Xiaolan Wang
Journal of Testing and Evaluation 46 (1) 244 (2018)
https://doi.org/10.1520/JTE20170201

Mixtures of stochastic differential equations with random effects: Application to data clustering

Maud Delattre, Valentine Genon-Catalot and Adeline Samson
Journal of Statistical Planning and Inference 173 109 (2016)
https://doi.org/10.1016/j.jspi.2015.12.003

An approximate expectation maximisation algorithm for estimating parameters in nonlinear dynamic models with process disturbances

Hadiseh Karimi and Kimberley B. McAuley
The Canadian Journal of Chemical Engineering 92 (5) 835 (2014)
https://doi.org/10.1002/cjce.21932

Parameter estimation in non-linear mixed effects models with SAEM algorithm: extension from ODE to PDE

E. Grenier, V. Louvet and P. Vigneaux
ESAIM: Mathematical Modelling and Numerical Analysis 48 (5) 1303 (2014)
https://doi.org/10.1051/m2an/2013140

Maximum Likelihood Estimation for Stochastic Differential Equations with Random Effects

MAUD DELATTRE, VALENTINE GENON‐CATALOT and ADELINE SAMSON
Scandinavian Journal of Statistics 40 (2) 322 (2013)
https://doi.org/10.1111/j.1467-9469.2012.00813.x

Nonparametric estimation for stochastic differential equations with random effects

F. Comte, V. Genon-Catalot and A. Samson
Stochastic Processes and their Applications 123 (7) 2522 (2013)
https://doi.org/10.1016/j.spa.2013.04.009

A review on estimation of stochastic differential equations for pharmacokinetic/pharmacodynamic models

Sophie Donnet and Adeline Samson
Advanced Drug Delivery Reviews 65 (7) 929 (2013)
https://doi.org/10.1016/j.addr.2013.03.005

Adaptive wavelet estimation of the diffusion coefficient under additive error measurements

M. Hoffmann, A. Munk and J. Schmidt-Hieber
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 48 (4) (2012)
https://doi.org/10.1214/11-AIHP472

Modeling subject‐specific phase‐dependent effects and variations in longitudinal responses via a geometric Brownian motion process

Li Zhu, Fushing Hsieh, Juan Li and Eric Chi
Statistics in Medicine 30 (19) 2435 (2011)
https://doi.org/10.1002/sim.4294

Parameter estimation and change-point detection from Dynamic Contrast Enhanced MRI data using stochastic differential equations

Charles-André Cuenod, Benjamin Favetto, Valentine Genon-Catalot, Yves Rozenholc and Adeline Samson
Mathematical Biosciences 233 (1) 68 (2011)
https://doi.org/10.1016/j.mbs.2011.06.006

Practical estimation of high dimensional stochastic differential mixed-effects models

Umberto Picchini and Susanne Ditlevsen
Computational Statistics & Data Analysis 55 (3) 1426 (2011)
https://doi.org/10.1016/j.csda.2010.10.003

Parameters of the Diffusion Leaky Integrate-and-Fire Neuronal Model for a Slowly Fluctuating Signal

Umberto Picchini, Susanne Ditlevsen, Andrea De Gaetano and Petr Lansky
Neural Computation 20 (11) 2696 (2008)
https://doi.org/10.1162/neco.2008.11-07-653