The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Sophie Donnet , Adeline Samson
ESAIM: PS, 12 (2008) 196-218
Published online: 2008-01-23
This article has been cited by the following article(s):
32 articles
Fitting Bayesian Stochastic Differential Equation Models with Mixed Effects through a Filtering Approach
Meng Chen, Sy-Miin Chow, Zita Oravecz and Emilio Ferrer Multivariate Behavioral Research 58 (5) 1014 (2023) https://doi.org/10.1080/00273171.2023.2171354
Inference in Gaussian state-space models with mixed effects for multiple epidemic dynamics
Romain Narci, Maud Delattre, Catherine Larédo and Elisabeta Vergu Journal of Mathematical Biology 85 (4) (2022) https://doi.org/10.1007/s00285-022-01806-3
A review on asymptotic inference in stochastic differential equations with mixed effects
Maud Delattre Japanese Journal of Statistics and Data Science 4 (1) 543 (2021) https://doi.org/10.1007/s42081-021-00105-3
Technology, Sustainability and Educational Innovation (TSIE)
Jose Soto and Saba Infante Advances in Intelligent Systems and Computing, Technology, Sustainability and Educational Innovation (TSIE) 1110 285 (2020) https://doi.org/10.1007/978-3-030-37221-7_24
On classical and Bayesian asymptotics in state space stochastic differential equations
Trisha Maitra and Sourabh Bhattacharya Brazilian Journal of Probability and Statistics 34 (3) (2020) https://doi.org/10.1214/19-BJPS439
Numerical Modeling and Computer Simulation
Bakrim Fadwa, Hamid El Maroufy and Hassan Ait Mousse Numerical Modeling and Computer Simulation (2020) https://doi.org/10.5772/intechopen.90751
Estimating reducible stochastic differential equations by conversion to a least-squares problem
Oscar García Computational Statistics 34 (1) 23 (2019) https://doi.org/10.1007/s00180-018-0837-4
A Geometric Framework for Stochastic Shape Analysis
Alexis Arnaudon, Darryl D. Holm and Stefan Sommer Foundations of Computational Mathematics 19 (3) 653 (2019) https://doi.org/10.1007/s10208-018-9394-z
Coupling stochastic EM and approximate Bayesian computation for parameter inference in state-space models
Umberto Picchini and Adeline Samson Computational Statistics 33 (1) 179 (2018) https://doi.org/10.1007/s00180-017-0770-y
Research on Load Spectrum Construction of Bench Test Based on Automotive Proving Ground
Xiaobing Yang, Xintian Liu, Jiachi Tong, Yansong Wang and Xiaolan Wang Journal of Testing and Evaluation 46 (1) 244 (2018) https://doi.org/10.1520/JTE20170201
Exact Gradients Improve Parameter Estimation in Nonlinear Mixed Effects Models with Stochastic Dynamics
Helga Kristin Olafsdottir, Jacob Leander, Joachim Almquist and Mats Jirstrand The AAPS Journal 20 (5) (2018) https://doi.org/10.1208/s12248-018-0232-7
Approximate maximum likelihood estimation for stochastic differential equations with random effects in the drift and the diffusion
Maud Delattre, Valentine Genon-Catalot and Catherine Larédo Metrika 81 (8) 953 (2018) https://doi.org/10.1007/s00184-018-0666-z
Pharmacometrics models with hidden Markovian dynamics
Marc Lavielle Journal of Pharmacokinetics and Pharmacodynamics 45 (1) 91 (2018) https://doi.org/10.1007/s10928-017-9541-1
Nonparametric estimation in a mixed-effect Ornstein–Uhlenbeck model
Charlotte Dion Metrika 79 (8) 919 (2016) https://doi.org/10.1007/s00184-016-0583-y
Estimation for stochastic differential equations with mixed effects
V. Genon-Catalot and C. Larédo Statistics 50 (5) 1014 (2016) https://doi.org/10.1080/02331888.2016.1141910
Mixtures of stochastic differential equations with random effects: Application to data clustering
Maud Delattre, Valentine Genon-Catalot and Adeline Samson Journal of Statistical Planning and Inference 173 109 (2016) https://doi.org/10.1016/j.jspi.2015.12.003
Currents in Industrial Mathematics
Jan Hauth, Patrick Lang and Andreas Wirsen Currents in Industrial Mathematics 291 (2015) https://doi.org/10.1007/978-3-662-48258-2_9
Mathematik im Fraunhofer-Institut
Jan Hauth, Patrick Lang and Andreas Wirsen Mathematik im Fraunhofer-Institut 303 (2015) https://doi.org/10.1007/978-3-662-44877-9_9
An approximate expectation maximisation algorithm for estimating parameters in nonlinear dynamic models with process disturbances
Hadiseh Karimi and Kimberley B. McAuley The Canadian Journal of Chemical Engineering 92 (5) 835 (2014) https://doi.org/10.1002/cjce.21932
Inference for SDE Models via Approximate Bayesian Computation
Umberto Picchini Journal of Computational and Graphical Statistics 23 (4) 1080 (2014) https://doi.org/10.1080/10618600.2013.866048
Parameter estimation in non-linear mixed effects models with SAEM algorithm: extension from ODE to PDE
E. Grenier, V. Louvet and P. Vigneaux ESAIM: Mathematical Modelling and Numerical Analysis 48 (5) 1303 (2014) https://doi.org/10.1051/m2an/2013140
A review on estimation of stochastic differential equations for pharmacokinetic/pharmacodynamic models
Sophie Donnet and Adeline Samson Advanced Drug Delivery Reviews 65 (7) 929 (2013) https://doi.org/10.1016/j.addr.2013.03.005
Maximum Likelihood Estimation for Stochastic Differential Equations with Random Effects
MAUD DELATTRE, VALENTINE GENON‐CATALOT and ADELINE SAMSON Scandinavian Journal of Statistics 40 (2) 322 (2013) https://doi.org/10.1111/j.1467-9469.2012.00813.x
Nonparametric estimation for stochastic differential equations with random effects
F. Comte, V. Genon-Catalot and A. Samson Stochastic Processes and their Applications 123 (7) 2522 (2013) https://doi.org/10.1016/j.spa.2013.04.009
Stochastic Biomathematical Models
Susanne Ditlevsen and Adeline Samson Lecture Notes in Mathematics, Stochastic Biomathematical Models 2058 3 (2013) https://doi.org/10.1007/978-3-642-32157-3_1
Adaptive wavelet estimation of the diffusion coefficient under additive error measurements
M. Hoffmann, A. Munk and J. Schmidt-Hieber Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 48 (4) (2012) https://doi.org/10.1214/11-AIHP472
Parameter estimation and change-point detection from Dynamic Contrast Enhanced MRI data using stochastic differential equations
Charles-André Cuenod, Benjamin Favetto, Valentine Genon-Catalot, Yves Rozenholc and Adeline Samson Mathematical Biosciences 233 (1) 68 (2011) https://doi.org/10.1016/j.mbs.2011.06.006
Practical estimation of high dimensional stochastic differential mixed-effects models
Umberto Picchini and Susanne Ditlevsen Computational Statistics & Data Analysis 55 (3) 1426 (2011) https://doi.org/10.1016/j.csda.2010.10.003
Modeling subject‐specific phase‐dependent effects and variations in longitudinal responses via a geometric Brownian motion process
Li Zhu, Fushing Hsieh, Juan Li and Eric Chi Statistics in Medicine 30 (19) 2435 (2011) https://doi.org/10.1002/sim.4294
Stochastic Differential Mixed-Effects Models
UMBERTO PICCHINI, ANDREA DE GAETANO and SUSANNE DITLEVSEN Scandinavian Journal of Statistics 37 (1) 67 (2010) https://doi.org/10.1111/j.1467-9469.2009.00665.x
Bayesian Analysis of Growth Curves Using Mixed Models Defined by Stochastic Differential Equations
Sophie Donnet, Jean‐Louis Foulley and Adeline Samson Biometrics 66 (3) 733 (2010) https://doi.org/10.1111/j.1541-0420.2009.01342.x
Parameters of the Diffusion Leaky Integrate-and-Fire Neuronal Model for a Slowly Fluctuating Signal
Umberto Picchini, Susanne Ditlevsen, Andrea De Gaetano and Petr Lansky Neural Computation 20 (11) 2696 (2008) https://doi.org/10.1162/neco.2008.11-07-653