Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

A comprehensive survey on techniques for numerical similarity measurement

Surendra Gupta, Urjita Thakar and Sanjiv Tokekar
Expert Systems with Applications 277 127235 (2025)
https://doi.org/10.1016/j.eswa.2025.127235

Fitting a manifold of large reach to noisy data

Charles Fefferman, Sergei Ivanov, Matti Lassas and Hariharan Narayanan
Journal of Topology and Analysis 17 (02) 315 (2025)
https://doi.org/10.1142/S1793525323500012

Iterative regularization in classification via hinge loss diagonal descent

Vassilis Apidopoulos, Tomaso Poggio, Lorenzo Rosasco and Silvia Villa
Inverse Problems 41 (3) 035010 (2025)
https://doi.org/10.1088/1361-6420/adb06f

Stagewise Training With Exponentially Growing Training Sets

Bin Gu, Hilal AlQuabeh, William de Vazelhes, Zhouyuan Huo and Heng Huang
IEEE Transactions on Neural Networks and Learning Systems 36 (4) 6148 (2025)
https://doi.org/10.1109/TNNLS.2024.3402108

SILVAN : Estimating Betweenness Centralities with Progressive Sampling and Non-uniform Rademacher Bounds

Leonardo Pellegrina and Fabio Vandin
ACM Transactions on Knowledge Discovery from Data 18 (3) 1 (2024)
https://doi.org/10.1145/3628601

Online Stochastic DCA With Applications to Principal Component Analysis

Hoai An Le Thi, Hoang Phuc Hau Luu and Tao Pham Dinh
IEEE Transactions on Neural Networks and Learning Systems 35 (5) 7035 (2024)
https://doi.org/10.1109/TNNLS.2022.3213558

Machine Learning–Based Feasibility Checks for Dynamic Time Slot Management

Liana van der Hagen, Niels Agatz, Remy Spliet, Thomas R. Visser and Leendert Kok
Transportation Science 58 (1) 94 (2024)
https://doi.org/10.1287/trsc.2022.1183

AP-GAN-DNN based creep fracture life prediction for 7050 aluminum alloy

Jianjun Yan, Junwei Zhou, Jianrui Zhang, Peng Zhao, Ziang Zhang, Weize Wang and Fuzhen Xuan
Engineering Fracture Mechanics 303 110096 (2024)
https://doi.org/10.1016/j.engfracmech.2024.110096

Nonparametric classification with missing data

Torben Sell, Thomas B. Berrett and Timothy I. Cannings
The Annals of Statistics 52 (3) (2024)
https://doi.org/10.1214/24-AOS2389

Machine learning facilitated the modeling of plastics hydrothermal pretreatment toward constructing an on-ship marine litter-to-methanol plant

Yi Cheng, Qiong Pan, Jie Li, Nan Zhang, Yang Yang, Jiawei Wang and Ningbo Gao
Frontiers of Chemical Science and Engineering 18 (10) (2024)
https://doi.org/10.1007/s11705-024-2468-3

Positive-Unlabeled Learning With Label Distribution Alignment

Yangbangyan Jiang, Qianqian Xu, Yunrui Zhao, Zhiyong Yang, Peisong Wen, Xiaochun Cao and Qingming Huang
IEEE Transactions on Pattern Analysis and Machine Intelligence 45 (12) 15345 (2023)
https://doi.org/10.1109/TPAMI.2023.3319431

Error scaling laws for kernel classification under source and capacity conditions

Hugo Cui, Bruno Loureiro, Florent Krzakala and Lenka Zdeborová
Machine Learning: Science and Technology 4 (3) 035033 (2023)
https://doi.org/10.1088/2632-2153/acf041

f-Divergences and Their Applications in Lossy Compression and Bounding Generalization Error

Saeed Masiha, Amin Gohari and Mohammad Hossein Yassaee
IEEE Transactions on Information Theory 69 (12) 7538 (2023)
https://doi.org/10.1109/TIT.2023.3268527

For interpolating kernel machines, minimizing the norm of the ERM solution maximizes stability

Akshay Rangamani, Lorenzo Rosasco and Tomaso Poggio
Analysis and Applications 21 (01) 193 (2023)
https://doi.org/10.1142/S0219530522400115

Learning From Heterogeneous Data Based on Social Interactions Over Graphs

Virginia Bordignon, Stefan Vlaski, Vincenzo Matta and Ali H. Sayed
IEEE Transactions on Information Theory 69 (5) 3347 (2023)
https://doi.org/10.1109/TIT.2022.3232368

How Can We Identify the Sparsity Structure Pattern of High-Dimensional Data: an Elementary Statistical Analysis to Interpretable Machine Learning

K. L. Lu
Mathematical Notes 112 (1-2) 223 (2022)
https://doi.org/10.1134/S0001434622070264

Statistical learning from biased training samples

Stephan Clémençon and Pierre Laforgue
Electronic Journal of Statistics 16 (2) (2022)
https://doi.org/10.1214/22-EJS2084

Statistical analysis of Mapper for stochastic and multivariate filters

Mathieu Carrière and Bertrand Michel
Journal of Applied and Computational Topology 6 (3) 331 (2022)
https://doi.org/10.1007/s41468-022-00090-w

Using Locality-Sensitive Hashing for SVM Classification of Large Data Sets

Maria D. Gonzalez-Lima and Carenne C. Ludeña
Mathematics 10 (11) 1812 (2022)
https://doi.org/10.3390/math10111812

Stochastic Difference-of-Convex-Functions Algorithms for Nonconvex Programming

Hoai An Le Thi, Van Ngai Huynh, Tao Pham Dinh and Hoang Phuc Hau Luu
SIAM Journal on Optimization 32 (3) 2263 (2022)
https://doi.org/10.1137/20M1385706

Machine Learning-Based Feasability Checks for Dynamic Time Slot Management

Liana van der Hagen, Niels A.H. Agatz, Remy Spliet, Thomas Visser and Adrianus Kok
SSRN Electronic Journal (2022)
https://doi.org/10.2139/ssrn.4011237

SVRG meets AdaGrad: painless variance reduction

Benjamin Dubois-Taine, Sharan Vaswani, Reza Babanezhad, Mark Schmidt and Simon Lacoste-Julien
Machine Learning 111 (12) 4359 (2022)
https://doi.org/10.1007/s10994-022-06265-x

Exponential Savings in Agnostic Active Learning Through Abstention

Nikita Puchkin and Nikita Zhivotovskiy
IEEE Transactions on Information Theory 68 (7) 4651 (2022)
https://doi.org/10.1109/TIT.2022.3156592

Sharpness Estimation of Combinatorial Generalization Ability Bounds for Threshold Decision Rules

Sh. Kh. Ishkina and K. V. Vorontsov
Automation and Remote Control 82 (5) 863 (2021)
https://doi.org/10.1134/S0005117921050106

Belief polarization in a complex world: A learning theory perspective

Nika Haghtalab, Matthew O. Jackson and Ariel D. Procaccia
Proceedings of the National Academy of Sciences 118 (19) (2021)
https://doi.org/10.1073/pnas.2010144118

Concentration inequalities for two-sample rank processes with application to bipartite ranking

Stephan Clémençon, Myrto Limnios and Nicolas Vayatis
Electronic Journal of Statistics 15 (2) (2021)
https://doi.org/10.1214/21-EJS1907

Random projections: Data perturbation for classification problems

Timothy I. Cannings
WIREs Computational Statistics 13 (1) (2021)
https://doi.org/10.1002/wics.1499

How isotropic kernels perform on simple invariants

Jonas Paccolat, Stefano Spigler and Matthieu Wyart
Machine Learning: Science and Technology 2 (2) 025020 (2021)
https://doi.org/10.1088/2632-2153/abd485

A novel multi-objective forest optimization algorithm for wrapper feature selection

Babak Nouri-Moghaddam, Mehdi Ghazanfari and Mohammad Fathian
Expert Systems with Applications 175 114737 (2021)
https://doi.org/10.1016/j.eswa.2021.114737

Robust k-means clustering for distributions with two moments

Yegor Klochkov, Alexey Kroshnin and Nikita Zhivotovskiy
The Annals of Statistics 49 (4) (2021)
https://doi.org/10.1214/20-AOS2033

Model Selection for Treatment Choice: Penalized Welfare Maximization

Eric Mbakop and Max Tabord-Meehan
Econometrica 89 (2) 825 (2021)
https://doi.org/10.3982/ECTA16437

Binary classification with covariate selection through ℓ0-penalised empirical risk minimisation

Le-Yu Chen and Sokbae Lee
The Econometrics Journal 24 (1) 103 (2021)
https://doi.org/10.1093/ectj/utaa017

Fast classification rates without standard margin assumptions

Olivier Bousquet and Nikita Zhivotovskiy
Information and Inference: A Journal of the IMA 10 (4) 1389 (2021)
https://doi.org/10.1093/imaiai/iaab010

Multiclass Classification by Sparse Multinomial Logistic Regression

Felix Abramovich, Vadim Grinshtein and Tomer Levy
IEEE Transactions on Information Theory 67 (7) 4637 (2021)
https://doi.org/10.1109/TIT.2021.3075137

Local nearest neighbour classification with applications to semi-supervised learning

Timothy I. Cannings, Thomas B. Berrett and Richard J. Samworth
The Annals of Statistics 48 (3) (2020)
https://doi.org/10.1214/19-AOS1868

Robust statistical learning with Lipschitz and convex loss functions

Geoffrey Chinot, Guillaume Lecué and Matthieu Lerasle
Probability Theory and Related Fields 176 (3-4) 897 (2020)
https://doi.org/10.1007/s00440-019-00931-3

Tightening Mutual Information-Based Bounds on Generalization Error

Yuheng Bu, Shaofeng Zou and Venugopal V. Veeravalli
IEEE Journal on Selected Areas in Information Theory 1 (1) 121 (2020)
https://doi.org/10.1109/JSAIT.2020.2991139

Mining Sequential Patterns with VC-Dimension and Rademacher Complexity

Diego Santoro, Andrea Tonon and Fabio Vandin
Algorithms 13 (5) 123 (2020)
https://doi.org/10.3390/a13050123

Prediction and Variable Selection in High-Dimensional Misspecified Binary Classification

Konrad Furmańczyk and Wojciech Rejchel
Entropy 22 (5) 543 (2020)
https://doi.org/10.3390/e22050543

Optimal functional supervised classification with separation condition

Sébastien Gadat, Sébastien Gerchinovitz and Clément Marteau
Bernoulli 26 (3) (2020)
https://doi.org/10.3150/19-BEJ1170

Advances in Intelligent Data Analysis XVIII

Alexander Mey, Tom Julian Viering and Marco Loog
Lecture Notes in Computer Science, Advances in Intelligent Data Analysis XVIII 12080 326 (2020)
https://doi.org/10.1007/978-3-030-44584-3_26

Accurate automatic detection of acute lymphatic leukemia using a refined simple classification

F. E. Al‐Tahhan, M. E. Fares, Ali A. Sakr and Doaa A. Aladle
Microscopy Research and Technique 83 (10) 1178 (2020)
https://doi.org/10.1002/jemt.23509

An empirical classification procedure for nonparametric mixture models

Qiang Zhao, Rohana J. Karunamuni and Jingjing Wu
Journal of the Korean Statistical Society 49 (3) 924 (2020)
https://doi.org/10.1007/s42952-019-00043-7

Multi-scale characterizations of colon polyps via computed tomographic colonography

Weiguo Cao, Marc J. Pomeroy, Yongfeng Gao, et al.
Visual Computing for Industry, Biomedicine, and Art 2 (1) (2019)
https://doi.org/10.1186/s42492-019-0032-7

Cause Effect Pairs in Machine Learning

Diviyan Kalainathan, Olivier Goudet, Michèle Sebag and Isabelle Guyon
The Springer Series on Challenges in Machine Learning, Cause Effect Pairs in Machine Learning 155 (2019)
https://doi.org/10.1007/978-3-030-21810-2_4

Relative deviation learning bounds and generalization with unbounded loss functions

Corinna Cortes, Spencer Greenberg and Mehryar Mohri
Annals of Mathematics and Artificial Intelligence 85 (1) 45 (2019)
https://doi.org/10.1007/s10472-018-9613-y

High-Dimensional Classification by Sparse Logistic Regression

Felix Abramovich and Vadim Grinshtein
IEEE Transactions on Information Theory 65 (5) 3068 (2019)
https://doi.org/10.1109/TIT.2018.2884963

Optimal survey schemes for stochastic gradient descent with applications to M-estimation

Stephan Clémençon, Patrice Bertail, Emilie Chautru and Guillaume Papa
ESAIM: Probability and Statistics 23 310 (2019)
https://doi.org/10.1051/ps/2018021

Chemical machine learning with kernels: The impact of loss functions

Quang Van Nguyen, Sandip De, Junhong Lin and Volkan Cevher
International Journal of Quantum Chemistry 119 (9) (2019)
https://doi.org/10.1002/qua.25872

Condition-Based Maintenance of Naval Propulsion Systems with supervised Data Analysis

Francesca Cipollini, Luca Oneto, Andrea Coraddu, Alan John Murphy and Davide Anguita
Ocean Engineering 149 268 (2018)
https://doi.org/10.1016/j.oceaneng.2017.12.002

Stability and Minimax Optimality of Tangential Delaunay Complexes for Manifold Reconstruction

Eddie Aamari and Clément Levrard
Discrete & Computational Geometry 59 (4) 923 (2018)
https://doi.org/10.1007/s00454-017-9962-z

Optimal Rates for the Regularized Learning Algorithms under General Source Condition

Abhishake Rastogi and Sivananthan Sampath
Frontiers in Applied Mathematics and Statistics 3 (2017)
https://doi.org/10.3389/fams.2017.00003

A Survey of Anticipatory Mobile Networking: Context-Based Classification, Prediction Methodologies, and Optimization Techniques

Nicola Bui, Matteo Cesana, S. Amir Hosseini, et al.
IEEE Communications Surveys & Tutorials 19 (3) 1790 (2017)
https://doi.org/10.1109/COMST.2017.2694140