Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Existence of optimal controls for stochastic Volterra equations

Andres Cardenas, Sergio Pulido and Rafael Serrano
ESAIM: Control, Optimisation and Calculus of Variations 31 30 (2025)
https://doi.org/10.1051/cocv/2025020

Linear-quadratic control for a class of stochastic Volterra equations: Solvability and approximation

Eduardo Abi Jaber, Enzo Miller and Huyên Pham
The Annals of Applied Probability 31 (5) (2021)
https://doi.org/10.1214/20-AAP1645

Adaptive energy-saving approximation for stationary processes

Z. A. Kabluchko and M. A. Lifshits
Izvestiya: Mathematics 83 (5) 932 (2019)
https://doi.org/10.1070/IM8840

Linear Stochastic Differential Equations Driven by Gauss-Volterra Processes and Related Linear-Quadratic Control Problems

T. E. Duncan, B. Maslowski and B. Pasik-Duncan
Applied Mathematics & Optimization 80 (2) 369 (2019)
https://doi.org/10.1007/s00245-017-9468-3

Stochastic linear quadratic optimal control problem for systems driven by fractional Brownian motions

Yuecai Han and Yifang Sun
Optimal Control Applications and Methods 40 (5) 900 (2019)
https://doi.org/10.1002/oca.2523

Адаптивная энергетически эффективная аппроксимация стационарных процессов

Zakhar Al'bertovich Kabluchko and Mikhail Anatolievich Lifshits
Известия Российской академии наук. Серия математическая 83 (5) 27 (2019)
https://doi.org/10.4213/im8840

Linear-Quadratic Fractional Gaussian Control

Tyrone E. Duncan and Bozenna Pasik-Duncan
SIAM Journal on Control and Optimization 51 (6) 4504 (2013)
https://doi.org/10.1137/120877283

Linear-quadratic Control for Stochastic Equations in a Hilbert Space with Fractional Brownian Motions

T. E. Duncan, B. Maslowski and B. Pasik-Duncan
SIAM Journal on Control and Optimization 50 (1) 507 (2012)
https://doi.org/10.1137/110831416

Stationarity and control of a tandem fluid network with fractional Brownian motion input

Chihoon Lee and Ananda Weerasinghe
Advances in Applied Probability 43 (03) 847 (2011)
https://doi.org/10.1017/S0001867800005164

Stationarity and control of a tandem fluid network with fractional Brownian motion input

Chihoon Lee and Ananda Weerasinghe
Advances in Applied Probability 43 (3) 847 (2011)
https://doi.org/10.1239/aap/1316792672

Optimal Control of a Stochastic Processing System Driven by a Fractional Brownian Motion Input

Arka P. Ghosh, Alexander Roitershtein and Ananda Weerasinghe
Advances in Applied Probability 42 (01) 183 (2010)
https://doi.org/10.1017/S0001867800003967

Optimal Management of a Variable Annuity Invested in a Black–Scholes Market Driven by a Multidimensional Fractional Brownian Motion

Alexandros A. Zimbidis
Stochastic Analysis and Applications 29 (1) 61 (2010)
https://doi.org/10.1080/07362994.2011.532021

The Control Systems Handbook, Second Edition

T Duncan and B Pasik-Duncan
Electrical Engineering Handbook, The Control Systems Handbook, Second Edition 20103237 64-1 (2010)
https://doi.org/10.1201/b10384-75

Optimal Control of a Stochastic Processing System Driven by a Fractional Brownian Motion Input

Arka P. Ghosh, Alexander Roitershtein and Ananda Weerasinghe
Advances in Applied Probability 42 (1) 183 (2010)
https://doi.org/10.1239/aap/1269611149

Solutions of linear and semilinear distributed parameter equations with a fractional Brownian motion

T. E. Duncan, B. Maslowski and B. Pasik‐Duncan
International Journal of Adaptive Control and Signal Processing 23 (2) 114 (2009)
https://doi.org/10.1002/acs.1050

Insurance control for classical risk model with fractional Brownian motion perturbation

H.Y. Zhang, L.H. Bai and A.M. Zhou
Statistics & Probability Letters 79 (4) 473 (2009)
https://doi.org/10.1016/j.spl.2008.09.027

DYNAMIC MEAN-VARIANCE OPTIMIZATION UNDER CLASSICAL RISK MODEL WITH FRACTIONAL BROWNIAN MOTION PERTURBATION

HUAYUE ZHANG and LIHUA BAI
Infinite Dimensional Analysis, Quantum Probability and Related Topics 11 (04) 589 (2008)
https://doi.org/10.1142/S0219025708003221

Separation principle in the fractional Gaussian linear-quadratic regulator problem with partial observation

Marina L. Kleptsyna, Alain Le Breton and Michel Viot
ESAIM: Probability and Statistics 12 94 (2008)
https://doi.org/10.1051/ps:2007046

Premium and reinsurance control of an ordinary insurance system with liabilities driven by a fractional Brownian motion

Alexandros A. Zimbidis
Scandinavian Actuarial Journal 2008 (1) 16 (2008)
https://doi.org/10.1080/03461230701722810

On the infinite time horizon linear-quadratic regulator problem under a fractional Brownian perturbation

Marina L. Kleptsyna, Alain Le Breton and Michel Viot
ESAIM: Probability and Statistics 9 185 (2005)
https://doi.org/10.1051/ps:2005008