The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
M. L. Kleptsyna , Alain Le Breton , M. Viot
ESAIM: PS, 7 (2003) 161-170
Published online: 2003-05-15
This article has been cited by the following article(s):
31 articles
Existence of optimal controls for stochastic Volterra equations
Andres Cardenas, Sergio Pulido and Rafael Serrano ESAIM: Control, Optimisation and Calculus of Variations 31 30 (2025) https://doi.org/10.1051/cocv/2025020
Linear-quadratic control for a class of stochastic Volterra equations: Solvability and approximation
Eduardo Abi Jaber, Enzo Miller and Huyên Pham The Annals of Applied Probability 31 (5) (2021) https://doi.org/10.1214/20-AAP1645
Adaptive energy-saving approximation for stationary processes
Z. A. Kabluchko and M. A. Lifshits Izvestiya: Mathematics 83 (5) 932 (2019) https://doi.org/10.1070/IM8840
Karen Guevara and Marcelo D. Fragoso 97 (2019) https://doi.org/10.1109/ICCA.2019.8899994
Linear Stochastic Differential Equations Driven by Gauss-Volterra Processes and Related Linear-Quadratic Control Problems
T. E. Duncan, B. Maslowski and B. Pasik-Duncan Applied Mathematics & Optimization 80 (2) 369 (2019) https://doi.org/10.1007/s00245-017-9468-3
Stochastic linear quadratic optimal control problem for systems driven by fractional Brownian motions
Yuecai Han and Yifang Sun Optimal Control Applications and Methods 40 (5) 900 (2019) https://doi.org/10.1002/oca.2523
Адаптивная энергетически эффективная аппроксимация стационарных процессов
Zakhar Al'bertovich Kabluchko and Mikhail Anatolievich Lifshits Известия Российской академии наук. Серия математическая 83 (5) 27 (2019) https://doi.org/10.4213/im8840
Karen Guevara and Marcelo D. Fragoso 5906 (2017) https://doi.org/10.1109/CDC.2017.8264553
T. E. Duncan and B. Pasik-Duncan 364 (2014) https://doi.org/10.1109/CDC.2014.7039408
Linear-Quadratic Fractional Gaussian Control
Tyrone E. Duncan and Bozenna Pasik-Duncan SIAM Journal on Control and Optimization 51 (6) 4504 (2013) https://doi.org/10.1137/120877283
An Infinite-Dimensional Fractional Linear Quadratic Regulator Problem
W. Grecksch and V. V. Anh Stochastic Analysis and Applications 30 (2) 203 (2012) https://doi.org/10.1080/07362994.2012.649618
Linear-quadratic Control for Stochastic Equations in a Hilbert Space with Fractional Brownian Motions
T. E. Duncan, B. Maslowski and B. Pasik-Duncan SIAM Journal on Control and Optimization 50 (1) 507 (2012) https://doi.org/10.1137/110831416
Control of Some Linear Equations in a Hilbert Space with Fractional Brownian Motions
T.E. Duncan, B. Maslowski and B. Pasik-Duncan IFAC Proceedings Volumes 44 (1) 3240 (2011) https://doi.org/10.3182/20110828-6-IT-1002.00919
Stationarity and control of a tandem fluid network with fractional Brownian motion input
Chihoon Lee and Ananda Weerasinghe Advances in Applied Probability 43 (03) 847 (2011) https://doi.org/10.1017/S0001867800005164
Stationarity and control of a tandem fluid network with fractional Brownian motion input
Chihoon Lee and Ananda Weerasinghe Advances in Applied Probability 43 (3) 847 (2011) https://doi.org/10.1239/aap/1316792672
T. E. Duncan and B. Pasik-Duncan 5035 (2011) https://doi.org/10.1109/CDC.2011.6160486
T. E. Duncan and B. Pasik-Duncan 6163 (2010) https://doi.org/10.1109/CDC.2010.5718045
Optimal Control of a Stochastic Processing System Driven by a Fractional Brownian Motion Input
Arka P. Ghosh, Alexander Roitershtein and Ananda Weerasinghe Advances in Applied Probability 42 (01) 183 (2010) https://doi.org/10.1017/S0001867800003967
Optimal Control for Non-Homogeneous Linear Systems Driven by Fractional Noises
Alexandros A. Zimbidis Stochastic Analysis and Applications 28 (2) 274 (2010) https://doi.org/10.1080/07362990903546470
Optimal Management of a Variable Annuity Invested in a Black–Scholes Market Driven by a Multidimensional Fractional Brownian Motion
Alexandros A. Zimbidis Stochastic Analysis and Applications 29 (1) 61 (2010) https://doi.org/10.1080/07362994.2011.532021
The Control Systems Handbook, Second Edition
T Duncan and B Pasik-Duncan Electrical Engineering Handbook, The Control Systems Handbook, Second Edition 20103237 64-1 (2010) https://doi.org/10.1201/b10384-75
Optimal Control of a Stochastic Processing System Driven by a Fractional Brownian Motion Input
Arka P. Ghosh, Alexander Roitershtein and Ananda Weerasinghe Advances in Applied Probability 42 (1) 183 (2010) https://doi.org/10.1239/aap/1269611149
Stochastic Control System for Mortality Benefits
Athanasios A. Pantelous and Alexandros A. Zimbidis Stochastic Analysis and Applications 27 (1) 125 (2009) https://doi.org/10.1080/07362990802564970
T. E. Duncan and B. Pasik-Duncan 8518 (2009) https://doi.org/10.1109/CDC.2009.5400454
Solutions of linear and semilinear distributed parameter equations with a fractional Brownian motion
T. E. Duncan, B. Maslowski and B. Pasik‐Duncan International Journal of Adaptive Control and Signal Processing 23 (2) 114 (2009) https://doi.org/10.1002/acs.1050
Insurance control for classical risk model with fractional Brownian motion perturbation
H.Y. Zhang, L.H. Bai and A.M. Zhou Statistics & Probability Letters 79 (4) 473 (2009) https://doi.org/10.1016/j.spl.2008.09.027
DYNAMIC MEAN-VARIANCE OPTIMIZATION UNDER CLASSICAL RISK MODEL WITH FRACTIONAL BROWNIAN MOTION PERTURBATION
HUAYUE ZHANG and LIHUA BAI Infinite Dimensional Analysis, Quantum Probability and Related Topics 11 (04) 589 (2008) https://doi.org/10.1142/S0219025708003221
Separation principle in the fractional Gaussian linear-quadratic regulator problem with partial observation
Marina L. Kleptsyna, Alain Le Breton and Michel Viot ESAIM: Probability and Statistics 12 94 (2008) https://doi.org/10.1051/ps:2007046
Premium and reinsurance control of an ordinary insurance system with liabilities driven by a fractional Brownian motion
Alexandros A. Zimbidis Scandinavian Actuarial Journal 2008 (1) 16 (2008) https://doi.org/10.1080/03461230701722810
On the infinite time horizon linear-quadratic regulator problem under a fractional Brownian perturbation
Marina L. Kleptsyna, Alain Le Breton and Michel Viot ESAIM: Probability and Statistics 9 185 (2005) https://doi.org/10.1051/ps:2005008
Stochastic Control for Linear Systems Driven by Fractional Noises
Yaozhong Hu and Xun Yu Zhou SIAM Journal on Control and Optimization 43 (6) 2245 (2005) https://doi.org/10.1137/S0363012903426045