The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Didier Dacunha-Castelle , Elisabeth Gassiat
ESAIM: PS, 1 (1997) 285-317
Published online: 2002-08-15
This article has been cited by the following article(s):
62 articles
Likelihood Asymptotics in Nonregular Settings: A Review with Emphasis on the Likelihood Ratio
Alessandra R. Brazzale and Valentina Mameli Statistical Science 39 (2) (2024) https://doi.org/10.1214/23-STS910
Full-model estimation for non-parametric multivariate finite mixture models
Marie Du Roy de Chaumaray and Matthieu Marbac Journal of the Royal Statistical Society Series B: Statistical Methodology 86 (4) 896 (2024) https://doi.org/10.1093/jrsssb/qkae002
Mixture Complexity and Its Application to Gradual Clustering Change Detection
Shunki Kyoya and Kenji Yamanishi Entropy 24 (10) 1407 (2022) https://doi.org/10.3390/e24101407
Asymptotics for Markov chain mixture detection
Matthew Fitzpatrick and Michael Stewart Econometrics and Statistics 22 56 (2022) https://doi.org/10.1016/j.ecosta.2021.11.004
Universal inference
Larry Wasserman, Aaditya Ramdas and Sivaraman Balakrishnan Proceedings of the National Academy of Sciences 117 (29) 16880 (2020) https://doi.org/10.1073/pnas.1922664117
A new model selection procedure for finite mixture regression models
Conglian Yu and Xiyang Wang Communications in Statistics - Theory and Methods 49 (18) 4347 (2020) https://doi.org/10.1080/03610926.2019.1601222
Penalized proportion estimation for non parametric mixture of regressions
Qinghua Ji and Zheng Ji Communications in Statistics - Theory and Methods 49 (7) 1537 (2020) https://doi.org/10.1080/03610926.2018.1473614
Singularity Structures and Impacts on Parameter Estimation in Finite Mixtures of Distributions
Nhat Ho and XuanLong Nguyen SIAM Journal on Mathematics of Data Science 1 (4) 730 (2019) https://doi.org/10.1137/18M122947X
Variational Bayesian Learning Theory
Shinichi Nakajima, Kazuho Watanabe and Masashi Sugiyama Variational Bayesian Learning Theory (2019) https://doi.org/10.1017/9781139879354
Unsupervised learning of mixture regression models for longitudinal data
Peirong Xu, Heng Peng and Tao Huang Computational Statistics & Data Analysis 125 44 (2018) https://doi.org/10.1016/j.csda.2018.03.012
Parameter Identifiability in Statistical Machine Learning: A Review
Zhi-Yong Ran and Bao-Gang Hu Neural Computation 29 (5) 1151 (2017) https://doi.org/10.1162/NECO_a_00947
Asymptotics for Regression Models Under Loss of Identifiability
Joseph Rynkiewicz Sankhya A 78 (2) 155 (2016) https://doi.org/10.1007/s13171-016-0085-z
On the Singularities of the Information Matrix and Multipath Change-Point Problems
M. Asgharian Theory of Probability & Its Applications 58 (4) 546 (2014) https://doi.org/10.1137/S0040585X97986783
A Mathematical Approach to Research Problems of Science and Technology
Yoshiyuki Ninomiya Mathematics for Industry, A Mathematical Approach to Research Problems of Science and Technology 5 239 (2014) https://doi.org/10.1007/978-4-431-55060-0_18
A statistical test for mixture detection with application to component identification in multidimensional biomolecular NMR studies
Nicoleta Serban and Pengfei Li Canadian Journal of Statistics 42 (1) 36 (2014) https://doi.org/10.1002/cjs.11202
On the singularities of the information matrix and multipath changepoint problems
M Asgharian and M Asgharian Теория вероятностей и ее применения 58 (4) 711 (2013) https://doi.org/10.4213/tvp4537
Asymptotic analysis of Bayesian generalization error with Newton diagram
Keisuke Yamazaki, Miki Aoyagi and Sumio Watanabe Neural Networks 23 (1) 35 (2010) https://doi.org/10.1016/j.neunet.2009.07.029
Robust estimation for order of hidden Markov models based on density power divergences
Sangyeol Lee and Taewook Lee Journal of Statistical Computation and Simulation 80 (5) 503 (2010) https://doi.org/10.1080/00949650902725155
373 (2009) https://doi.org/10.1002/9780470434642.refs
The likelihood ratio test for general mixture models with or without structural parameter
Jean-Marc Azaïs, Élisabeth Gassiat and Cécile Mercadier ESAIM: Probability and Statistics 13 301 (2009) https://doi.org/10.1051/ps:2008010
A modified likelihood ratio test for homogeneity in bivariate normal mixtures of two samples
Qingzhu Lei and Yongsong Qin Journal of Systems Science and Complexity 22 (3) 460 (2009) https://doi.org/10.1007/s11424-009-9178-2
Robust estimation for the order of finite mixture models
Sangyeol Lee and Taewook Lee Metrika 68 (3) 365 (2008) https://doi.org/10.1007/s00184-007-0168-x
Dynamics of Learning Near Singularities in Layered Networks
Haikun Wei, Jun Zhang, Florent Cousseau, Tomoko Ozeki and Shun-ichi Amari Neural Computation 20 (3) 813 (2008) https://doi.org/10.1162/neco.2007.12-06-414
A likelihood ratio test of a homoscedastic normal mixture against a heteroscedastic normal mixture
Yungtai Lo Statistics and Computing 18 (3) 233 (2008) https://doi.org/10.1007/s11222-008-9052-4
Forest Stand Growth Analysis Based on Irregular Statistical Models
Y. Ninomiya, H. Yanagihara and A. Yoshimoto FORMATH 6 43 (2007) https://doi.org/10.15684/formath.06.005
Recent asymptotic results in testing for mixtures
Bernard Garel Computational Statistics & Data Analysis 51 (11) 5295 (2007) https://doi.org/10.1016/j.csda.2006.09.033
Variational Bayes Solution of Linear Neural Networks and Its Generalization Performance
Shinichi Nakajima and Sumio Watanabe Neural Computation 19 (4) 1112 (2007) https://doi.org/10.1162/neco.2007.19.4.1112
The likelihood ratio test for homogeneity in bivariate normal mixtures
Yong Song Qin and Bruce Smith Journal of Multivariate Analysis 97 (2) 474 (2006) https://doi.org/10.1016/j.jmva.2005.03.011
Singularities Affect Dynamics of Learning in Neuromanifolds
Shun-ichi Amari, Hyeyoung Park and Tomoko Ozeki Neural Computation 18 (5) 1007 (2006) https://doi.org/10.1162/neco.2006.18.5.1007
Asymptotic distribution and local power of the log-likelihood ratio test for mixtures: bounded and unbounded cases
Jean-Marc Azaïs, Élisabeth Gassiat and Cécile Mercadier Bernoulli 12 (5) (2006) https://doi.org/10.3150/bj/1161614946
Density estimation by the penalized combinatorial method
Gérard Biau and Luc Devroye Journal of Multivariate Analysis 94 (1) 196 (2005) https://doi.org/10.1016/j.jmva.2004.04.011
Difficulty of Singularity in Population Coding
Shun-ichi Amari and Hiroyuki Nakahara Neural Computation 17 (4) 839 (2005) https://doi.org/10.1162/0899766053429426
Likelihood ratio tests of the number of components in a normal mixture with unequal variances
Yungtai Lo Statistics & Probability Letters 71 (3) 225 (2005) https://doi.org/10.1016/j.spl.2004.11.007
Asymptotic theory of the likelihood ratio test for the identification of a mixture
Bernard Garel Journal of Statistical Planning and Inference 131 (2) 271 (2005) https://doi.org/10.1016/j.jspi.2004.01.006
Handbook of Geometric Computing
Hyeyoung Park, Tomoko Ozeki and Shun-ichi Amari Handbook of Geometric Computing 69 (2005) https://doi.org/10.1007/3-540-28247-5_3
Theoretical analysis of power in a two-component normal mixture model
Peter Hall and Michael Stewart Journal of Statistical Planning and Inference 134 (1) 158 (2005) https://doi.org/10.1016/j.jspi.2004.04.003
Singularities in Complete Bipartite Graph-Type Boltzmann Machines and Upper Bounds of Stochastic Complexities
K. Yamazaki and S. Watanabe IEEE Transactions on Neural Networks 16 (2) 312 (2005) https://doi.org/10.1109/TNN.2004.841792
Algebraic geometry of singular learning machines and symmetry of generalization and training errors
Sumio Watanabe Neurocomputing 67 198 (2005) https://doi.org/10.1016/j.neucom.2004.11.037
Algebraic geometry and stochastic complexity of hidden Markov models
Keisuke Yamazaki and Sumio Watanabe Neurocomputing 69 (1-3) 62 (2005) https://doi.org/10.1016/j.neucom.2005.02.014
Algorithmic Learning Theory
Keisuke Yamazaki and Sumio Watanabe Lecture Notes in Computer Science, Algorithmic Learning Theory 3244 350 (2004) https://doi.org/10.1007/978-3-540-30215-5_27
A Note on Density Model Size Testing
G. Biau, L. Devroye, G. Biau and L. Devroye IEEE Transactions on Information Theory 50 (3) 576 (2004) https://doi.org/10.1109/TIT.2004.825250
Asymptotic Poisson Character of Extremes in Non-Stationary Gaussian Models
Jean-Marc Aza�s and C�cile Mercadier Extremes 6 (4) 301 (2003) https://doi.org/10.1007/s10687-004-4722-2
Learning and inference in hierarchical models with singularities
Shun‐ichi Amari, Tomoko Ozeki and Hyeyoung Park Systems and Computers in Japan 34 (7) 34 (2003) https://doi.org/10.1002/scj.10353
Singularities in mixture models and upper bounds of stochastic complexity
Keisuke Yamazaki and Sumio Watanabe Neural Networks 16 (7) 1029 (2003) https://doi.org/10.1016/S0893-6080(03)00005-4
Statistical Estimation in Singular Models.
KENJI FUKUMIZU The Brain & Neural Networks 10 (4) 201 (2003) https://doi.org/10.3902/jnns.10.201
Asymptotics for likelihood ratio tests under loss of identifiability
Xin Liu and Yongzhao Shao The Annals of Statistics 31 (3) (2003) https://doi.org/10.1214/aos/1056562463
Likelihood ratio of unidentifiable models and multilayer neural networks
Kenji Fukumizu The Annals of Statistics 31 (3) (2003) https://doi.org/10.1214/aos/1056562464
On the Problem in Model Selection of Neural Network Regression in Overrealizable Scenario
Katsuyuki Hagiwara Neural Computation 14 (8) 1979 (2002) https://doi.org/10.1162/089976602760128090
Concentration inequalities, large and moderate deviations for self-normalized empirical processes
Bernard Bercu, Elisabeth Gassiat and Emmanuel Rio The Annals of Probability 30 (4) (2002) https://doi.org/10.1214/aop/1039548367
A mixture model for the probability distribution of rain rate
Neal Jeffries and Ruth Pfeiffer Environmetrics 12 (1) 1 (2001) https://doi.org/10.1002/1099-095X(200102)12:1<1::AID-ENV425>3.0.CO;2-N
Algebraic Analysis for Nonidentifiable Learning Machines
Sumio Watanabe Neural Computation 13 (4) 899 (2001) https://doi.org/10.1162/089976601300014402
Determining the number of components in mixtures of linear models
Dollena S. Hawkins, David M. Allen and Arnold J. Stromberg Computational Statistics & Data Analysis 38 (1) 15 (2001) https://doi.org/10.1016/S0167-9473(01)00017-2
Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence
Shun-ichi Amari, Tomoko Ozeki and Hyeyoung Park Lecture Notes in Computer Science, Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence 2084 325 (2001) https://doi.org/10.1007/3-540-45720-8_37
Algebraic geometrical methods for hierarchical learning machines
Sumio Watanabe Neural Networks 14 (8) 1049 (2001) https://doi.org/10.1016/S0893-6080(01)00069-7
Mathematical Foundation for Redundant Statistical Estimation
Sumio Watanabe Proceedings of the ISCIE International Symposium on Stochastic Systems Theory and its Applications 2000 119 (2000) https://doi.org/10.5687/sss.2000.119
On Recursive Estimation in Incomplete Data Models
Jian-Feng Yao Statistics 34 (1) 27 (2000) https://doi.org/10.1080/02331880008802704
Likelihood ratio tests based on subglobal optimization: A power comparison in exponential mixture models
Wilfried Seidel, Karl Mosler and Manfred Alker Statistical Papers 41 (1) 85 (2000) https://doi.org/10.1007/BF02925678
The likelihood ratio test for the number of components in a mixture with Markov regime
Elisabeth Gassiat and Christine Keribin ESAIM: Probability and Statistics 4 25 (2000) https://doi.org/10.1051/ps:2000102
Testing the order of a model using locally conic parametrization: population mixtures and stationary ARMA processes
D. Dacunha-Castelle and E. Gassiat The Annals of Statistics 27 (4) (1999) https://doi.org/10.1214/aos/1017938921
Sur le test de maximum de vraisemblance pour le mélange de populations
Gabriela Ciuperca Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 328 (4) 351 (1999) https://doi.org/10.1016/S0764-4442(99)80224-9
Bounds and asymptotic expansions for the distribution of the Maximum of a smooth stationary Gaussian process
Jean-Marc Azaïs, Christine Cierco-Ayrolles and Alain Croquette ESAIM: Probability and Statistics 3 107 (1999) https://doi.org/10.1051/ps:1999105
Estimation consistante de l'ordre de modèles de mélange
Christine Keribiin Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 326 (2) 243 (1998) https://doi.org/10.1016/S0764-4442(97)89479-7