Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Angle Expansion Estimation and Correction Based on the Lindeberg–Feller Central Limit Theorem Under Multi-Pulse Integration

Jiong Cai, Rui Wang and Handong Yang
Remote Sensing 16 (23) 4535 (2024)
https://doi.org/10.3390/rs16234535

Quantitative bounds in the central limit theorem for m-dependent random variables

Svante Janson, Luca Pratelli and Pietro Rigo
Latin American Journal of Probability and Mathematical Statistics 21 (1) 245 (2024)
https://doi.org/10.30757/ALEA.v21-10

Rates of convergence in the central limit theorem for martingales in the non stationary setting

Jérôme Dedecker, Florence Merlevède and Emmanuel Rio
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 58 (2) (2022)
https://doi.org/10.1214/21-AIHP1182

Asymptotic Properties of the Plug-in Estimator of the Discrete Entropy Under Dependence

Raffaello Seri and Mario Martinoli
IEEE Transactions on Information Theory 67 (12) 7659 (2021)
https://doi.org/10.1109/TIT.2021.3109307

Consistent nonparametric change point detection combining CUSUM and marked empirical processes

Maria Mohr and Natalie Neumeyer
Electronic Journal of Statistics 14 (1) (2020)
https://doi.org/10.1214/20-EJS1715

A Higher-Order Correct Fast Moving-Average Bootstrap for Dependent Data

Davide La Vecchia, Alban Moor and Olivier Scaillet
SSRN Electronic Journal (2019)
https://doi.org/10.2139/ssrn.3515288

Local M-estimation with discontinuous criterion for dependent and limited observations

Myung Hwan Seo and Taisuke Otsu
The Annals of Statistics 46 (1) (2018)
https://doi.org/10.1214/17-AOS1552

The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series

Heejoon Han, Oliver Linton, Tatsushi Oka and Yoon-Jae Whang
Journal of Econometrics 193 (1) 251 (2016)
https://doi.org/10.1016/j.jeconom.2016.03.001

Estimation for stochastic damping hamiltonian systems under partial observation—I. Invariant density

Patrick Cattiaux, José R. León and Clémentine Prieur
Stochastic Processes and their Applications 124 (3) 1236 (2014)
https://doi.org/10.1016/j.spa.2013.10.008

Strong approximation of partial sums under dependence conditions with application to dynamical systems

Florence Merlevède and Emmanuel Rio
Stochastic Processes and their Applications 122 (1) 386 (2012)
https://doi.org/10.1016/j.spa.2011.08.012

Asymptotic normality of kernel estimates in a regression model for random fields

Mohamed El Machkouri and Radu Stoica
Journal of Nonparametric Statistics 22 (8) 955 (2010)
https://doi.org/10.1080/10485250903505893

Central limit theorem for sampled sums of dependent random variables

Nadine Guillotin-Plantard and Clémentine Prieur
ESAIM: Probability and Statistics 14 299 (2010)
https://doi.org/10.1051/ps:2008030

The notion of ψ-weak dependence and its applications to bootstrapping time series

Paul Doukhan and Michael H. Neumann
Probability Surveys 5 (none) (2008)
https://doi.org/10.1214/06-PS086

Dependent Lindeberg central limit theorem and some applications

Jean-Marc Bardet, Paul Doukhan, Gabriel Lang and Nicolas Ragache
ESAIM: Probability and Statistics 12 154 (2008)
https://doi.org/10.1051/ps:2007053

On mean central limit theorems for stationary sequences

Jérôme Dedecker and Emmanuel Rio
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 44 (4) (2008)
https://doi.org/10.1214/07-AIHP117

Goodness-of-fit tests for Markovian time series models: Central limit theory and bootstrap approximations

Michael H. Neumann and Efstathios Paparoditis
Bernoulli 14 (1) (2008)
https://doi.org/10.3150/07-BEJ6055

Asymptotics for theLp-deviation of the variance estimator under diffusion

Paul Doukhan and José R. León
ESAIM: Probability and Statistics 8 132 (2004)
https://doi.org/10.1051/ps:2004005