The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Stéphane Boucheron , Olivier Bousquet , Gábor Lugosi
ESAIM: PS, 9 (2005) 323-375
Published online: 2005-11-15
This article has been cited by the following article(s):
220 articles | Pages:
Research and Application of SVM Model Based on Privileged Information
颖 曹 Advances in Applied Mathematics 06 (09) 1248 (2017) https://doi.org/10.12677/AAM.2017.69150
Encyclopedia of Machine Learning and Data Mining
Mark Reid Encyclopedia of Machine Learning and Data Mining 556 (2017) https://doi.org/10.1007/978-1-4899-7687-1_328
Alex G. C. de Sá, Gisele L. Pappa and Alex A. Freitas 1125 (2017) https://doi.org/10.1145/3067695.3082053
Imanol Bilbao and Javier Bilbao 173 (2017) https://doi.org/10.1109/INTELCIS.2017.8260032
Nataliia Kozlovskaia and Alexey Zaytsev 908 (2017) https://doi.org/10.1109/ICMLA.2017.00-39
A Survey of Anticipatory Mobile Networking: Context-Based Classification, Prediction Methodologies, and Optimization Techniques
Nicola Bui, Matteo Cesana, S. Amir Hosseini, et al. IEEE Communications Surveys & Tutorials 19 (3) 1790 (2017) https://doi.org/10.1109/COMST.2017.2694140
Optimal Rates for the Regularized Learning Algorithms under General Source Condition
Abhishake Rastogi and Sivananthan Sampath Frontiers in Applied Mathematics and Statistics 3 (2017) https://doi.org/10.3389/fams.2017.00003
Entropy “2”-Soft Classification of Objects
Yuri Popkov, Zeev Volkovich, Yuri Dubnov, Renata Avros and Elena Ravve Entropy 19 (4) 178 (2017) https://doi.org/10.3390/e19040178
Efficient Regression in Metric Spaces via Approximate Lipschitz Extension
Lee-Ad Gottlieb, Aryeh Kontorovich and Robert Krauthgamer IEEE Transactions on Information Theory 63 (8) 4838 (2017) https://doi.org/10.1109/TIT.2017.2713820
Encyclopedia of Machine Learning and Data Mining
Xinhua Zhang Encyclopedia of Machine Learning and Data Mining 1083 (2017) https://doi.org/10.1007/978-1-4899-7687-1_718
Nonparametric Decentralized Detection and Sparse Sensor Selection Via Weighted Kernel
Weiguang Wang, Yingbin Liang, Eric P. Xing and Lixin Shen IEEE Transactions on Signal Processing 64 (2) 306 (2016) https://doi.org/10.1109/TSP.2015.2474297
Bidding Wind Energy Exploiting Wind Speed Forecasts
Antonio Giannitrapani, Simone Paoletti, Antonio Vicino and Donato Zarrilli IEEE Transactions on Power Systems 31 (4) 2647 (2016) https://doi.org/10.1109/TPWRS.2015.2477942
Неравенства концентрации для выборок без возвращений
Ilya O Tolstikhin Теория вероятностей и ее применения 61 (3) 464 (2016) https://doi.org/10.4213/tvp5069
Nikita Zhivotovskiy and Steve Hanneke 9925 18 (2016) https://doi.org/10.1007/978-3-319-46379-7_2
Yu. S. Popkov, Yu. A. Dubnov and A. Yu. Popkov 27 (2016) https://doi.org/10.1109/IS.2016.7737456
Advances in Multimedia Information Processing - PCM 2016
Xiang-Jun Shen, Wen-Chao Zhang, Wei Cai, et al. Lecture Notes in Computer Science, Advances in Multimedia Information Processing - PCM 2016 9916 211 (2016) https://doi.org/10.1007/978-3-319-48890-5_21
Classification in general finite dimensional spaces with the k-nearest neighbor rule
Sébastien Gadat, Thierry Klein and Clément Marteau The Annals of Statistics 44 (3) (2016) https://doi.org/10.1214/15-AOS1395
Tao Yang, Dongmei Fu and Lian Hao 1461 (2016) https://doi.org/10.1109/SICE.2016.7749177
Encyclopedia of Machine Learning and Data Mining
Xinhua Zhang Encyclopedia of Machine Learning and Data Mining 1 (2016) https://doi.org/10.1007/978-1-4899-7502-7_718-1
Moritz Hardt, Nimrod Megiddo, Christos Papadimitriou and Mary Wootters 111 (2016) https://doi.org/10.1145/2840728.2840730
Matteo Riondato and Eli Upfal 1145 (2016) https://doi.org/10.1145/2939672.2939770
Statistical Active Learning Algorithms for Noise Tolerance and Differential Privacy
Maria Florina Balcan and Vitaly Feldman Algorithmica 72 (1) 282 (2015) https://doi.org/10.1007/s00453-014-9954-9
Matteo Riondato and Eli Upfal 2321 (2015) https://doi.org/10.1145/2783258.2789984
Algorithmic Learning Theory
Ilya Tolstikhin, Nikita Zhivotovskiy and Gilles Blanchard Lecture Notes in Computer Science, Algorithmic Learning Theory 9355 209 (2015) https://doi.org/10.1007/978-3-319-24486-0_14
Bandwidth selection in kernel empirical risk minimization via the gradient
Michaël Chichignoud and Sébastien Loustau The Annals of Statistics 43 (4) (2015) https://doi.org/10.1214/15-AOS1318
Matteo Riondato and Eli Upfal 1005 (2015) https://doi.org/10.1145/2783258.2783265
Measures of Complexity
Ingo Steinwart Measures of Complexity 217 (2015) https://doi.org/10.1007/978-3-319-21852-6_16
Empirical risk minimization for heavy-tailed losses
Christian Brownlees, Emilien Joly and Gábor Lugosi The Annals of Statistics 43 (6) (2015) https://doi.org/10.1214/15-AOS1350
Minimax fast rates for discriminant analysis with errors in variables
Sébastien Loustau and Clément Marteau Bernoulli 21 (1) (2015) https://doi.org/10.3150/13-BEJ564
Handbook of Mathematical Methods in Imaging
Gabriele Steidl Handbook of Mathematical Methods in Imaging 1393 (2015) https://doi.org/10.1007/978-1-4939-0790-8_22
Machine Learning and Knowledge Discovery in Databases
Maria-Irina Nicolae, Éric Gaussier, Amaury Habrard and Marc Sebban Lecture Notes in Computer Science, Machine Learning and Knowledge Discovery in Databases 9284 594 (2015) https://doi.org/10.1007/978-3-319-23528-8_37
A statistical view of clustering performance through the theory ofU-processes
Stéphan Clémençon Journal of Multivariate Analysis 124 42 (2014) https://doi.org/10.1016/j.jmva.2013.10.001
Pranjal Awasthi, Maria Florina Balcan and Philip M. Long 449 (2014) https://doi.org/10.1145/2591796.2591839
Stephan Clemencon, Patrice Bertail and Emilie Chautru 25 (2014) https://doi.org/10.1109/BigData.2014.7004208
Handbook of Mathematical Methods in Imaging
Gabriele Steidl Handbook of Mathematical Methods in Imaging 1 (2014) https://doi.org/10.1007/978-3-642-27795-5_22-5
Classification algorithms using adaptive partitioning
Peter Binev, Albert Cohen, Wolfgang Dahmen and Ronald DeVore The Annals of Statistics 42 (6) (2014) https://doi.org/10.1214/14-AOS1234
Risk Bounds for Embedded Variable Selection in Classification Trees
Servane Gey and Tristan Mary-Huard IEEE Transactions on Information Theory 60 (3) 1688 (2014) https://doi.org/10.1109/TIT.2014.2298874
On the Additive Properties of the Fat-Shattering Dimension
Ohad Asor, Hubert Haoyang Duan and Aryeh Kontorovich IEEE Transactions on Neural Networks and Learning Systems 25 (12) 2309 (2014) https://doi.org/10.1109/TNNLS.2014.2327065
A partial overview of the theory of statistics with functional data
Antonio Cuevas Journal of Statistical Planning and Inference 147 1 (2014) https://doi.org/10.1016/j.jspi.2013.04.002
Cover-based combinatorial bounds on probability of overfitting
A. I. Frey and I. O. Tolstikhin Doklady Mathematics 89 (2) 185 (2014) https://doi.org/10.1134/S1064562414020136
Efficient Discovery of Association Rules and Frequent Itemsets through Sampling with Tight Performance Guarantees
Matteo Riondato and Eli Upfal ACM Transactions on Knowledge Discovery from Data 8 (4) 1 (2014) https://doi.org/10.1145/2629586
Machine Learning and Knowledge Discovery in Databases
Matteo Riondato Lecture Notes in Computer Science, Machine Learning and Knowledge Discovery in Databases 8726 516 (2014) https://doi.org/10.1007/978-3-662-44845-8_48
Antonio Giannitrapani, Simone Paoletti, Antonio Vicino and Donato Zarrilli 1013 (2013) https://doi.org/10.1109/CDC.2013.6760015
Antonio Giannitrapani, Simone Paoletti, Antonio Vicino and Donato Zarrilli 1 (2013) https://doi.org/10.1109/ISGTEurope.2013.6695355
Aggressive Periodontitis Defined by Recursive Partitioning Analysis of Immunologic Factors
G. Papantonopoulos, K. Takahashi, T. Bountis and B.G. Loos Journal of Periodontology 84 (7) 974 (2013) https://doi.org/10.1902/jop.2012.120444
Similarity-Based Pattern Recognition
Lee-Ad Gottlieb, Aryeh Kontorovich and Robert Krauthgamer Lecture Notes in Computer Science, Similarity-Based Pattern Recognition 7953 43 (2013) https://doi.org/10.1007/978-3-642-39140-8_3
Sample Average Approximation Method for Compound Stochastic Optimization Problems
Yuri M. Ermoliev and Vladimir I. Norkin SIAM Journal on Optimization 23 (4) 2231 (2013) https://doi.org/10.1137/120863277
An empirical comparison of learning algorithms for nonparametric scoring: the TreeRank algorithm and other methods
Stéphan Clémençon, Marine Depecker and Nicolas Vayatis Pattern Analysis and Applications 16 (4) 475 (2013) https://doi.org/10.1007/s10044-012-0299-1
Upper bounds and aggregation in bipartite ranking
Sylvain Robbiano Electronic Journal of Statistics 7 (none) (2013) https://doi.org/10.1214/13-EJS805
On signal representations within the Bayes decision framework
Jorge F. Silva and Shrikanth S. Narayanan Pattern Recognition 45 (5) 1853 (2012) https://doi.org/10.1016/j.patcog.2011.11.015
Kullback–Leibler aggregation and misspecified generalized linear models
Philippe Rigollet The Annals of Statistics 40 (2) (2012) https://doi.org/10.1214/11-AOS961
Khobaib Zaamout and John Z. Zhang 256 (2012) https://doi.org/10.1109/ICNC.2012.6234540
Learning in Non-Stationary Environments
James Edward Smith, Muhammad Atif Tahir, Davy Sannen and Hendrik Van Brussel Learning in Non-Stationary Environments 125 (2012) https://doi.org/10.1007/978-1-4419-8020-5_6
Machine Learning and Knowledge Discovery in Databases
Ürün Dogan, Tobias Glasmachers and Christian Igel Lecture Notes in Computer Science, Machine Learning and Knowledge Discovery in Databases 7523 122 (2012) https://doi.org/10.1007/978-3-642-33460-3_13
Optimal weighted nearest neighbour classifiers
Richard J. Samworth The Annals of Statistics 40 (5) (2012) https://doi.org/10.1214/12-AOS1049
Consistency of learning algorithms using Attouch–Wets convergence
S. Villa, L. Rosasco, S. Mosci and A. Verri Optimization 61 (3) 287 (2012) https://doi.org/10.1080/02331934.2010.511671
On the Stability of Empirical Risk Minimization in the Presence of Multiple Risk Minimizers
Benjamin I. P. Rubinstein and Aleksandr Simma IEEE Transactions on Information Theory 58 (7) 4160 (2012) https://doi.org/10.1109/TIT.2012.2191681
Robustness and generalization
Huan Xu and Shie Mannor Machine Learning 86 (3) 391 (2012) https://doi.org/10.1007/s10994-011-5268-1
Risk bounds for CART classifiers under a margin condition
Servane Gey Pattern Recognition 45 (9) 3523 (2012) https://doi.org/10.1016/j.patcog.2012.02.021
Vladimir I. Norkin and Roger J-B Wets 94 (2012) https://doi.org/10.5200/stoprog.2012.17
Mark Reid 447 (2011) https://doi.org/10.1007/978-0-387-30164-8_328
Inductive Logic
Ulrike von Luxburg and Bernhard Schölkopf Handbook of the History of Logic, Inductive Logic 10 651 (2011) https://doi.org/10.1016/B978-0-444-52936-7.50016-1
Adaptive partitioning schemes for bipartite ranking
Stéphan Clémençon, Marine Depecker and Nicolas Vayatis Machine Learning 83 (1) 31 (2011) https://doi.org/10.1007/s10994-010-5190-y
Handbook of Mathematical Methods in Imaging
Gabriele Steidl Handbook of Mathematical Methods in Imaging 959 (2011) https://doi.org/10.1007/978-0-387-92920-0_22
A combinatorial approach to hypothesis similarity in generalization bounds
D. Kochedykov Pattern Recognition and Image Analysis 21 (4) 616 (2011) https://doi.org/10.1134/S1054661811040109
Xinhua Zhang 845 (2011) https://doi.org/10.1007/978-0-387-30164-8_712
Learning noisy linear classifiers via adaptive and selective sampling
Giovanni Cavallanti, Nicolò Cesa-Bianchi and Claudio Gentile Machine Learning 83 (1) 71 (2011) https://doi.org/10.1007/s10994-010-5191-x
Pattern Recognition and Machine Intelligence
Konstantin Vorontsov and Andrey Ivahnenko Lecture Notes in Computer Science, Pattern Recognition and Machine Intelligence 6744 66 (2011) https://doi.org/10.1007/978-3-642-21786-9_13
A high-dimensional Wilks phenomenon
Stéphane Boucheron and Pascal Massart Probability Theory and Related Fields 150 (3-4) 405 (2011) https://doi.org/10.1007/s00440-010-0278-7
Plugin procedure in segmentation and application to hyperspectral image segmentation
Robin Girard Electronic Journal of Statistics 4 (none) (2010) https://doi.org/10.1214/10-EJS567
Combinatorial shell bounds for generalization ability
D. A. Kochedykov Pattern Recognition and Image Analysis 20 (4) 459 (2010) https://doi.org/10.1134/S1054661810040061
Adaptive Kernel Methods Using the Balancing Principle
E. De Vito, S. Pereverzyev and L. Rosasco Foundations of Computational Mathematics 10 (4) 455 (2010) https://doi.org/10.1007/s10208-010-9064-2
E. Ceseracciu, M. Reggiani, Z. Sawacha, M. Sartori, F. Spolaor, C. Cobelli and E. Pagello 165 (2010) https://doi.org/10.1109/ROMAN.2010.5598664
Overlaying Classifiers: A Practical Approach to Optimal Scoring
Stéphan Clémençon and Nicolas Vayatis Constructive Approximation 32 (3) 619 (2010) https://doi.org/10.1007/s00365-010-9084-9
Davide Anguita, Alessandro Ghio, Noemi Greco, Luca Oneto and Sandro Ridella 1 (2010) https://doi.org/10.1109/IJCNN.2010.5596450
Some Properties of Gaussian Reproducing Kernel Hilbert Spaces and Their Implications for Function Approximation and Learning Theory
Ha Quang Minh Constructive Approximation 32 (2) 307 (2010) https://doi.org/10.1007/s00365-009-9080-0
Sample Complexity of Classifiers Taking Values in ℝQ, Application to Multi-Class SVMs
Yann Guermeur Communications in Statistics - Theory and Methods 39 (3) 543 (2010) https://doi.org/10.1080/03610920903140288
Maxisets for Model Selection
F. Autin, E. Le Pennec, J. M. Loubes and V. Rivoirard Constructive Approximation 31 (2) 195 (2010) https://doi.org/10.1007/s00365-009-9062-2
On Convergence of Kernel Learning Estimators
Vladimir I. Norkin and Michiel A. Keyzer SIAM Journal on Optimization 20 (3) 1205 (2010) https://doi.org/10.1137/070696817
A discriminative model for semi-supervised learning
Maria-Florina Balcan and Avrim Blum Journal of the ACM 57 (3) 1 (2010) https://doi.org/10.1145/1706591.1706599
A survey of cross-validation procedures for model selection
Sylvain Arlot and Alain Celisse Statistics Surveys 4 (none) (2010) https://doi.org/10.1214/09-SS054
Algorithmic Learning Theory
Stéphan Clémençon and Nicolas Vayatis Lecture Notes in Computer Science, Algorithmic Learning Theory 5809 216 (2009) https://doi.org/10.1007/978-3-642-04414-4_20
Fast learning rates in statistical inference through aggregation
Jean-Yves Audibert The Annals of Statistics 37 (4) (2009) https://doi.org/10.1214/08-AOS623
Handbook of Financial Time Series
Hannes Leeb and Benedikt M. Pötscher Handbook of Financial Time Series 889 (2009) https://doi.org/10.1007/978-3-540-71297-8_39
Instability, complexity, and evolution
S. Vakulenko and D. Grigoriev Journal of Mathematical Sciences 158 (6) 787 (2009) https://doi.org/10.1007/s10958-009-9412-4
Dayu Huang, Jayakrishnan Unnikrishnan, Sean Meyn, Venugopal Veeravalli and Amit Surana 62 (2009) https://doi.org/10.1109/ITWNIT.2009.5158542
Efficiency of classification methods based on empirical risk minimization
V. I. Norkin and M. A. Keyzer Cybernetics and Systems Analysis 45 (5) 750 (2009) https://doi.org/10.1007/s10559-009-9153-x
Agnostic active learning
Maria-Florina Balcan, Alina Beygelzimer and John Langford Journal of Computer and System Sciences 75 (1) 78 (2009) https://doi.org/10.1016/j.jcss.2008.07.003
Reducing mechanism design to algorithm design via machine learning
Maria-Florina Balcan, Avrim Blum, Jason D. Hartline and Yishay Mansour Journal of Computer and System Sciences 74 (8) 1245 (2008) https://doi.org/10.1016/j.jcss.2007.08.002
Classification with minimax fast rates for classes of Bayes rules with sparse representation
Guillaume Lecué Electronic Journal of Statistics 2 (none) (2008) https://doi.org/10.1214/07-EJS015
PAC-Bayesian bounds for randomized empirical risk minimizers
P. Alquier Mathematical Methods of Statistics 17 (4) 279 (2008) https://doi.org/10.3103/S1066530708040017
Maria-Florina Balcan, Avrim Blum and Santosh Vempala 671 (2008) https://doi.org/10.1145/1374376.1374474
Constructing processes with prescribed mixing coefficients
Leonid (Aryeh) Kontorovich Statistics & Probability Letters 78 (17) 2910 (2008) https://doi.org/10.1016/j.spl.2008.04.016
Christopher P. Diehl and Ashley J. Llorens 468 (2008) https://doi.org/10.1109/MLSP.2008.4685525
Obtaining fast error rates in nonconvex situations
Shahar Mendelson Journal of Complexity 24 (3) 380 (2008) https://doi.org/10.1016/j.jco.2007.09.001
Lower Bounds for the Empirical Minimization Algorithm
Shahar Mendelson IEEE Transactions on Information Theory 54 (8) 3797 (2008) https://doi.org/10.1109/TIT.2008.926323
Ranking and Empirical Minimization of U-statistics
Stéphan Clémençon, Gábor Lugosi and Nicolas Vayatis The Annals of Statistics 36 (2) (2008) https://doi.org/10.1214/009052607000000910
HECTAR: A method to predict subcellular targeting in heterokonts
Bernhard Gschloessl, Yann Guermeur and J Mark Cock BMC Bioinformatics 9 (1) (2008) https://doi.org/10.1186/1471-2105-9-393
Bayesian approach, theory of empirical risk minimization. Comparative analysis
I. V. Sergienko, A. M. Gupal and A. A. Vagis Cybernetics and Systems Analysis 44 (6) 822 (2008) https://doi.org/10.1007/s10559-008-9058-0
Kernel methods in machine learning
Thomas Hofmann, Bernhard Schölkopf and Alexander J. Smola The Annals of Statistics 36 (3) (2008) https://doi.org/10.1214/009053607000000677
Pages:
101 to 200 of 220 articles