Issue |
ESAIM: PS
Volume 1, 1997
|
|
---|---|---|
Page(s) | 35 - 61 | |
DOI | https://doi.org/10.1051/ps:1997102 | |
Published online | 15 August 2002 |
About the Lindeberg method for strongly mixing sequences
URA 0743 CNRS, Université de Paris-Sud
We extend the Lindeberg method for the central limit theorem to strongly mixing sequences. Here we obtain a generalization of the central limit theorem of Doukhan, Massart and Rio to nonstationary strongly mixing triangular arrays. The method also provides estimates of the Lévy distance between the distribution of the normalized sum and the standard normal.
Résumé
Nous étendons la méthode de démonstration du théorème limite central de Lindeberg aux suites de variables aléatoires fortement mélangeantes. Le théorème limite central obtenu recouvre celui de Doukhan, Massart et Rio pour les suites stationnaires et fortement mélangeantes. Nous obtenons aussi des estimées de la distance de Lévy entre la somme normalisée et la variable gaussienne centrée et réduite pour les suites stationnaires.
Key words: Deviation inequalities / concentration of measure / logarithmic Sobolev inequalities / empirical processes.
© EDP Sciences, SMAI, 1997
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.