Issue |
ESAIM: PS
Volume 1, 1997
|
|
---|---|---|
Page(s) | 357 - 389 | |
DOI | https://doi.org/10.1051/ps:1997114 | |
Published online | 15 August 2002 |
Density in small time for Lévy processes
picard@ucfma.univ-bpclermont.fr
The density of real-valued Lévy processes is studied in small time under the assumption that the process has many small jumps. We prove that the real line can be divided into three subsets on which the density is smaller and smaller: the set of points that the process can reach with a finite number of jumps (Δ-accessible points); the set of points that the process can reach with an infinite number of jumps (asymptotically Δ-accessible points); and the set of points that the process cannot reach by jumping (Δ-inaccessible points).
Résumé
Nous étudions la densité des processus de Lévy réels en temps petit, en supposant que le processus a beaucoup de petits sauts. Nous montrons que la droite réelle peut être divisée en trois sous-ensembles sur lesquels la densité est de plus en plus petite : l'ensemble des points que le processus peut atteindre en un nombre fini de sauts (points Δ-accessibles) ; l'ensemble des points que le processus peut atteindre en un nombre infini de sauts (points asymptotiquement Δ-accessibles); et l'ensemble des points que le processus ne peut pas atteindre en sautant (points Δ-inaccessibles).
Key words: Levy process / small time / density of processes / large deviations'.
© EDP Sciences, SMAI, 1997
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.