Free Access
Issue
ESAIM: PS
Volume 13, January 2009
Page(s) 181 - 196
DOI https://doi.org/10.1051/ps:2008005
Published online 11 June 2009
  1. H. Akaike, A new look at the statistical model identification. IEEE Trans. Automatic Control 19 (1973) 716–723. [NASA ADS] [CrossRef] [MathSciNet]
  2. A. Azzalini and A.W. Bowman, A look at some data on the Old Faithful geyser. Appl. Statist. 39 (1990) 357–365. [CrossRef]
  3. A. Barron, L. Birgé and P. Massart, Risk bounds for model selection via penalization. Probab. Theory Relat. Fields 113 (1999) 301–413. [CrossRef] [MathSciNet]
  4. L. Birgé and Y. Rozenholc, How many bins should be put in a regular histogram? ESAIM: PS 10 (2006) 24–45. [CrossRef] [EDP Sciences]
  5. J.E. Daly, Construction of optimal histograms. Commun. Stat., Theory Methods 17 (1988) 2921–2931.
  6. P.L. Davies and A. Kovac, Local extremes, runs, strings and multiresolution (with discussion). Ann. Stat. 29 (2001) 1–65. [CrossRef]
  7. P.L. Davies and A. Kovac, Densities, spectral densities and modality. Ann. Stat. 32 (2004) 1093–1136. [CrossRef]
  8. P.L. Davies and A. Kovac, ftnonpar, R-package, version 0.1-82, http://www.r-project.org (2008).
  9. L. Devroye and L. Györfi, Nonparametric density estimation: the L1 view. John Wiley, New York (1985).
  10. L. Dümbgen and G. Walther, Multiscale inference about a density. Ann. Stat. 36 (2008) 1758–1785. [CrossRef]
  11. J. Engel, The multiresolution histogram. Metrika 46 (1997) 41–57. [CrossRef] [MathSciNet]
  12. D. Freedman and P. Diaconis, On the histogram as a density estimator: L2 theory. Z. Wahr. Verw. Geb. 57 (1981) 453–476. [CrossRef]
  13. I.J. Good and R.A. Gaskins, Density estimation and bump-hunting by the penalizes likelihood method exemplified by scattering and meteorite data. J. Amer. Statist. Assoc. 75 (1980) 42–73. [CrossRef] [MathSciNet]
  14. P. Hall, Akaike's information criterion and Kullback-Leibler loss for histogram density estimation. Probab. Theory Relat. Fields 85 (1990) 449–467. [CrossRef]
  15. P. Hall and E.J. Hannan, On stochastic complexity and nonparametric density estimation. Biometrika 75 (1988) 705–714. [CrossRef] [MathSciNet]
  16. P. Hall and M.P. Wand, Minimizing L1 distance in nonparametric density estimation. J. Multivariate Anal. 26 (1988) 59–88. [CrossRef] [MathSciNet]
  17. K. He and G. Meeden, Selecting the number of bins in a histogram: A decision theoretic approach. J. Stat. Plann. Inference 61 (1997) 49–59. [CrossRef]
  18. Y. Kanazawa, An optimal variable cell histogram. Commun. Stat., Theory Methods 17 (1988) 1401–1422.
  19. Y. Kanazawa, An optimal variable cell histogram based on the sample spacings. Ann. Stat. 20 (1992) 291–304. [CrossRef]
  20. Y. Kanazawa, Hellinger distance and Akaike's information criterion for the histogram. Statist. Probab. Lett. 17 (1993) 293–298. [CrossRef] [MathSciNet]
  21. C.R. Loader, Bandwidth selection: classical or plug-in? Ann. Stat. 27 (1999) 415–438. [CrossRef]
  22. J.S. Marron and M.P. Wand, Exact mean integrated squared error. Ann. Stat. 20 (1992) 712–736. [CrossRef] [MathSciNet]
  23. M. Postman, J.P. Huchra and M.J. Geller, Probes of large-scale structures in the Corona Borealis region. Astrophys. J. 92, (1986) 1238–1247.
  24. J. Rissanen, A universal prior for integers and estimation by minimum description length. Ann. Stat. 11 (1983) 416–431. [CrossRef]
  25. J. Rissanen, Stochastic Complexity (with discussion). J. R. Statist. Soc. B 49 (1987) 223–239.
  26. J. Rissanen, Stochastic complexity in statistical inquiry. World Scientific, New Jersey (1989).
  27. J. Rissanen, Fisher information and stochastic complexity. IEEE Trans. Inf. Theory 42 (1996) 40–47. [CrossRef]
  28. J. Rissanen, T.P. Speed and B. Yu, Density estimation by stochastic complexity. IEEE Trans. Inf. Theory 38 (1992) 315–323. [CrossRef]
  29. K. Roeder, Density estimation with confidence sets exemplified by superclusters and voids in galaxies. J. Amer. Statist. Assoc. 85 (1990) 617–624. [CrossRef]
  30. M. Rudemo, Empirical choice of histograms and kernel density estimators. Scand. J. Statist. 9 (1982)65–78.
  31. G. Schwartz, Estimating the dimension of a model. Ann. Stat. 6 (1978) 461–464. [NASA ADS] [CrossRef] [MathSciNet]
  32. D.W. Scott, On optimal and data-based histograms. Biometrika 66 (1979) 605–610. [CrossRef] [MathSciNet]
  33. D.W. Scott, Multivariate density estimation: theory, practice, and visualization. Wiley, New York (1992).
  34. B.W. Silverman, Choosing the window width when estimating a density. Biometrika 65 (1978) 1–11. [CrossRef] [MathSciNet]
  35. B.W. Silverman, Density estimation for statistics and data analysis. Chapman and Hall, London (1985).
  36. J.S. Simonoff and F. Udina, Measuring the stability of histogram appearance when the anchor position is changed. Comput. Stat. Data Anal. 23 (1997) 335–353. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  37. H. Sturges, The choice of a class-interval. J. Amer. Statist. Assoc. 21 (1926) 65–66.
  38. W. Szpankowski, On asymptotics of certain recurrences arising in universal coding. Prob. Inf. Trans. 34 (1998) 142–146.
  39. M.P. Wand, Data-based choice of histogram bin width. American Statistician 51 (1997) 59–64. [CrossRef]
  40. M.P. Wand and B. Ripley, KernSmooth, R-package, version 2.22-21, http://www.r-project.org (2007).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.