Free Access
Issue
ESAIM: PS
Volume 11, February 2007
Special Issue: "Stochastic analysis and mathematical finance" in honor of Nicole El Karoui's 60th birthday
Page(s) 102 - 114
DOI https://doi.org/10.1051/ps:2007009
Published online 31 March 2007
  1. K. Azuma, Weighted sums of certain dependent random variables. Tôkohu Math. J. 19 (1967) 357–367. [CrossRef]
  2. H.C.P. Berbee, Random walks with stationary increments and renewal theory. Mathematical Centre Tracts 112, Mathematisch Centrum, Amsterdam (1979).
  3. L. Birgé and P. Massart, An adaptive compression algorithm in Besov Spaces. Constr. Approx. 16 (2000) 1–36. [CrossRef] [MathSciNet]
  4. P. Collet, S. Martinez and B. Schmitt, Exponential inequalities for dynamical measures of expanding maps of the interval. Probab. Theory Relat. Fields 123 (2002) 301–322. [CrossRef]
  5. J. Dedecker and F. Merlevède, The conditional central limit theorem in Hilbert spaces. Stoch. Processes Appl. 108 (2003) 229–262.
  6. J. Dedecker and C. Prieur, Coupling for Formula -dependent sequences and applications. J. Theoret. Probab. 17 (2004) 861–885. [CrossRef] [MathSciNet]
  7. J. Dedecker and C. Prieur, New dependence coefficients. Examples and applications to statistics. Probab. Theory Relat. Fields 132 (2005) 203–236. [CrossRef]
  8. J. Dedecker and E. Rio, On the functional central limit theorem for stationary processes. Ann. Inst. H. Poincaré Probab. Statist. 36 (2000) 1–34. [CrossRef] [MathSciNet]
  9. P. Doukhan, P. Massart and E. Rio, Invariance principle for absolutely regular empirical processes. Ann. Inst. H. Poincaré Probab. Statist. 31 (1995) 393–427. [MathSciNet]
  10. M.I. Gordin, The central limit theorem for stationary processes. Dokl. Akad. Nauk SSSR 188 (1969) 739–741. [MathSciNet]
  11. P. Massart, The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab. 18 (1990) 1269–1283. [CrossRef] [MathSciNet]
  12. F. Merlevède and M. Peligrad, On the coupling of dependent random variables and applications, in Empirical process techniques for dependent data, Birkhäuser (2002) 171–193.
  13. P. Oliveira and C. Suquet, Formula weak convergence of the empirical process for dependent variables, in Wavelets and statistics (Villard de Lans 1994), Lect. Notes Statist. 103 (1995) 331–344.
  14. P. Oliveira and C. Suquet, Weak convergence in Formula of the uniform empirical process under dependence. Statist. Probab. Lett. 39 (1998) 363–370. [CrossRef] [MathSciNet]
  15. I.F. Pinelis, An approach to inequalities for the distributions of infinite-dimensional martingales, in Probability in Banach spaces, Proc. Eight Internat. Conf. 8 (1992) 128–134.
  16. E. Rio, Inégalités de Hoeffding pour les fonctions lipschitziennes de suites dépendantes. C. R. Acad. Sci. Paris Série I 330 (2000) 905–908.
  17. A.W. van der Vaart, Bracketing smooth functions. Stoch. Processes Appl. 52 (1994) 93–105. [CrossRef]
  18. W.A. Woyczyński, A central limit theorem for martingales in Banach spaces. Bull. Acad. Polon. Sci. Sr. Sci. Math. Astronom. Phys. 23 (1975) 917–920.
  19. V.V. Yurinskii, Exponential bounds for large deviations. Theory Prob. Appl. 19 (1974) 154–155. [CrossRef]