Free Access
Issue
ESAIM: PS
Volume 9, June 2005
Page(s) 143 - 164
DOI https://doi.org/10.1051/ps:2005007
Published online 15 November 2005
  1. A. Antoniadis, J. Bigot and T. Sapatinas, Wavelet estimators in nonparametric regression: a comparative simulation study. J. Statist. Software 6 (2001) 1–83.
  2. A. Antoniadis and I. Gijbels, Detecting abrupt changes by wavelet methods. J. Nonparam. Statist 14 (2001) 7–29. [CrossRef]
  3. A. Arneodo, E. Bacry, S. Jaffard and J.F. Muzy, Oscillating singularities and fractal functions, in Spline functions and the theory of wavelets (Montreal, PQ, 1996), Amer. Math. Soc., Providence, RI. CRM Proc. Lect. Notes 18 (1999) 315–329..
  4. A. Arneodo, E. Bacry, S. Jaffard and J.F. Muzy, Singularity spectrum of multifractal functions involving oscillating singularities. J. Fourier Anal. Appl. 4 (1998) 159–174. [CrossRef] [MathSciNet]
  5. A. Arneodo, E. Bacry, S. Jaffard and J.F. Muzy, Oscillating singularities on Cantor sets: a grand-canonical multifractal formalism. J. Statist. Phys. 87 (1997) 179–209. [CrossRef] [MathSciNet]
  6. A. Arneodo, E. Bacry and J.F. Muzy, The thermodynamics of fractals revisited with wavelets. Physica A 213 (1995) 232–275. [CrossRef]
  7. E. Bacry, J.F. Muzy and A. Arneodo, Singularity spectrum of fractal signals: exact results. J. Statist. Phys. 70 (1993) 635–674. [CrossRef] [MathSciNet]
  8. J. Bigot, Automatic landmark registration of 1D curves, in Recent advances and trends in nonparametric statistics, M. Akritas and D.N. Politis Eds., Elsevier (2003) 479–496.
  9. J. Bigot, Landmark-based registration of 1D curves and functional analysis of variance with wavelets. Technical Report TR0333, IAP (Interuniversity Attraction Pole network) (2003).
  10. L. Breiman, Bagging Predictors. Machine Learning 24 (1996) 123–140.
  11. L.D. Brown and M.G. Lo, Asymptotic equivalence of nonparametric regression and white noise. Ann. Statist. 3 (1996) 2384–2398.
  12. P. Chaudhuri and J.S.Marron, SiZer for exploration of structures in curves. J. Am. Statist. Ass. 94 (1999) 807–823. [CrossRef]
  13. P. Chaudhuri and J.S. Marron Scale space view of curve estimation. Ann. Statist. 28 (2000) 408–428.
  14. R.R. Coifman and D.L. Donoho, Translation-invariant de-noising, in Wavelets and Statistics, A. Antoniadis and G. Oppenheim, Eds., New York: Springer-Verlag. Lect. Notes Statist. 103 (1995) 125–150.
  15. I. Daubechies, Ten Lectures on Wavelets. Philadelphia, SIAM (1992).
  16. D.L. Donoho and I.M. Johnstone, Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 (1994) 425–455. [CrossRef] [MathSciNet]
  17. D.L. Donoho and I.M. Johnstone, Adapting to unknown smoothness via wavelet shrinkage. J. Am. Statist. Ass. 90 (1995) 1200–1224. [CrossRef] [MathSciNet]
  18. D.L. Donoho and I.M. Johnstone, Minimax estimation via wavelet shrinkage. Ann. Statist. 26 (1998) 879–921. [CrossRef] [MathSciNet] [PubMed]
  19. D.L. Donoho and I.M. Johnstone, Asymptotic minimality of wavelet estimators with sampled data. Stat. Sinica 9 (1999) 1–32.
  20. D.L. Donoho, I.M. Johnstone, G. Kerkyacharian and D. Picard, Wavelet shrinkage: Asymptotia? (with discussion). J. R. Statist. Soc. B 57 (1995) 301–337.
  21. N.I. Fisher and J.S. Marron, Mode testing via the excess mass estimate. Biometrika 88 (2001) 499–517. [CrossRef] [MathSciNet]
  22. T. Gasser and A. Kneip, Searching for Structure in Curve Samples. J. Am. Statist. Ass. 90 (1995) 1179–1188. [CrossRef]
  23. B. Hummel and R. Moniot, Reconstruction from zero-crossings in scale-space. IEEE Trans. Acoust., Speech, and Signal Proc. 37 (1989) 2111–2130.
  24. S. Jaffard, Mathematical Tools for Multifractal Signal Processing. Signal Processing for Multimedia, J.S Byrnes Ed., IOS Press (1999) 111–128.
  25. A. Kneip and T. Gasser, Statistical tools to analyze data representing a sample of curves. Ann. Statist. 20 (1992) 1266–1305. [CrossRef] [MathSciNet]
  26. M.R. Leadbetter, G. Lindgren and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes. Springer-Verlag (1983).
  27. T. Lindeberg, Scale Space Theory in Computer Vision. Kluwer, Boston (1994).
  28. S. Mallat, Zero-Crossings of a Wavelet Transform. IEEE Trans. Inform. Theory 37 (1991) 1019–1033. [CrossRef] [MathSciNet]
  29. S. Mallat, A Wavelet Tour of Signal Processing. Academic Press (1998).
  30. S. Mallat and W.L. Hwang, Singularity Detection and Processing with Wavelets. IEEE Trans. Inform. Theory 38 (1992) 617–643. [CrossRef] [MathSciNet]
  31. S. Mallat and S. Zhong, Characterization of Signals From Multiscale Egde. IEEE Trans. Pattern Anal. Machine Intelligence 14 (1992) 710–732. [CrossRef]
  32. S. Mallat and S. Zhong, Wavelet Transformation Maxima and Multiscale Edges, in Wavelets: A Tutorial in Theory and Applications, C.K. Chui Ed. Boston, Academic Press (1992) 66–104.
  33. S. Mallat and S. Zhong, Wavelet Maxima Representation, in Wavelets and Applications, Y. Meyer Ed. New York, Springer-Verlag (1992) 207–284.
  34. M.C. Minnotte and D.W. Scott, The mode tree: a tool for visualization of nonparametric density features. J. Computat. Graph. Statist. 2 (1993) 51–68. [CrossRef]
  35. M.C. Minnotte, D.J. Marchette and E.J. Wegman, The bumpy road to the mode forest. J. Comput. Graph. Statist. 7 (1998) 239–251. [CrossRef]
  36. M. Misiti, Y. Misiti, G. Oppenheim and J.-M. Poggi, Décomposition en ondelettes et méthodes comparatives : étude d'une courbe de charge éléctrique. Revue de Statistique Appliquée 17 (1994) 57–77.
  37. J.F. Muzy, E. Bacry and A. Arneodo, The multifractal formalism revisited with wavelets. Int. J. Bif. Chaos 4 (1994) 245–302. [CrossRef]
  38. D. Picard and K. Tribouley, Adaptive confidence interval for pointwise curve estimation. Ann. Statist. 28 (2000) 298–335. [CrossRef] [MathSciNet]
  39. M. Raimondo, Minimax estimation of sharp change points. Ann. Statist. 26 (1998) 1379–1397. [CrossRef] [MathSciNet]
  40. J.O. Ramsay and X. Li, Curve registration. J. R. Statist. Soc. B 60 (1998) 351–363. [CrossRef]
  41. J.O. Ramsay and B.W. Silverman, Functional data analysis. New York, Springer Verlag (1997).
  42. Y. Raviv and N. Intrator, Bootstrapping with Noise: An Effective Regularization Technique. Connection Science, Special issue on Combining Estimator 8 (1996) 356–372.
  43. M. Unser, A. Aldroubi and M. Eden, On the Asymptotic Convergence of B-Spline Wavelets to Gabor Functions. IEEE Trans. Inform. Theory 38 (1992) 864–872. [CrossRef] [MathSciNet]
  44. Y. Wang, Jump and Sharp Cusp Detection by Wavelets. Biometrica 82 (1995) 385–397. [CrossRef]
  45. K. Wang and T. Gasser, Alignment of curves by dynamic time warping. Ann. Statist. 25 (1997) 1251–1276. [CrossRef] [MathSciNet]
  46. K. Wang and T. Gasser, Synchronizing sample curves nonparametrically. Ann. Statist. 27 (1999) 439–460. [CrossRef] [MathSciNet]
  47. Y.P. Wang and S.L. Lee, Scale-Space Derived From B-Splines. IEEE Trans. on Pattern Analysis and Machine Intelligence 20 (1998) 1040–1055. [CrossRef]
  48. L. Younes, Deformations, Warping and Object Comparison. Tutorial (2000) http://www.cmla.ens-cachan.fr/~younes.
  49. A.L. Yuille and T.A. Poggio, Scaling Theorems for Zero Crossings. IEEE Trans. Pattern Anal. Machine Intelligence 8 (1986) 15–25. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.