Free Access
Issue
ESAIM: PS
Volume 8, August 2004
Page(s) 87 - 101
DOI https://doi.org/10.1051/ps:2004004
Published online 15 September 2004
  1. S. Bobkov, C. Houdré and P. Tetali, λ, vertex isoperimetry and concentration. Combinatorica 20 (2000) 153–172. [CrossRef] [MathSciNet]
  2. S. Bobkov and M. Ledoux, Poincaré's inequalities and Talagrand's concentration phenomenon for the exponential distribution. Probab. Theory Relat. Fields 107 (1997) 383–400. [CrossRef] [MathSciNet]
  3. S.G. Bobkov and M. Ledoux, On modified logarithmic Sobolev inequalities for Bernoulli and Poisson measures. J. Funct. Anal. 156 (1998) 347–365. [CrossRef] [MathSciNet]
  4. S.G. Bobkov and F. Götze, Discrete isoperimetric and Poincaré-type inequalities. Probab. Theory Relat. Fields 114 (1999) 245–277. [CrossRef]
  5. S.G. Bobkov and C. Houdré, Isoperimetric constants for product probability measures. Ann. Probab. 25 (1997) 184–205. [CrossRef] [MathSciNet]
  6. T. Cacoullos and V. Papathanasiou, Characterizations of distributions by generalizations of variance bounds and simple proofs of the CLT. J. Statist. Plann. Inference 63 (1997) 157–171. [CrossRef] [MathSciNet]
  7. J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, in Problems in analysis (Papers dedicated to Salomon Bochner, 1969) Princeton Univ. Press, Princeton, N.J. (1970) 195–199.
  8. L.H.Y. Chen and J.H. Lou, Characterization of probability distributions by Poincaré-type inequalities. Ann. Inst. H. Poincaré Probab. Statist. 23 (1987) 91–110. [MathSciNet]
  9. P. Dai Pra, A.M. Paganoni and G. Posta, Entropy inequalities for unbounded spin systems. Ann. Probab. 30 (2002) 1959–1976. [CrossRef] [MathSciNet]
  10. P. Diaconis and D. Stroock, Geometric bounds for eigenvalues of Markov chains. Ann. Appl. Probab. 1 (1991) 36–61. [CrossRef] [MathSciNet]
  11. P. Fougères, Spectral gap for log-concave probability measures on the real line. Preprint (2002).
  12. L. Gross, Logarithmic Sobolev inequalities. Amer. J. Math. 97 (1975) 1061–1083. [CrossRef] [MathSciNet]
  13. C. Houdré, Remarks on deviation inequalities for functions of infinitely divisible random vectors. Ann. Probab. 30 (2002) 1223–1237. [CrossRef] [MathSciNet]
  14. C. Houdré and N. Privault, Concentration and deviation inequalities in infinite dimensions via covariance representations. Bernoulli 8 (2002) 697–720. [MathSciNet]
  15. C. Houdré and P. Tetali, Isoperimetric invariants for product Markov chains and graph products. Combinatorica. To appear.
  16. M. Ledoux, Concentration of measure and logarithmic Sobolev inequalities, in Séminaire de Probabilités XXXIII, Lect. Notes Math. 1709 (1999) 120–216.
  17. L. Miclo, An example of application of discrete Hardy's inequalities. Markov Process. Related Fields 5 (1999) 319–330. [MathSciNet]
  18. T. Stoyanov, Isoperimetric and related constants for graphs and Markov chains. Ph.D. Thesis, Georgia Institute of Technology (2001).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.