New directions in Time Series Analysis (Guest Editor: Philippe Soulier)
Free Access
Volume 6, 2002
New directions in Time Series Analysis (Guest Editor: Philippe Soulier)
Page(s) 189 - 209
Section New directions in Time Series Analysis (Guest Editor: Philippe Soulier)
Published online 15 November 2002
  1. H. Akaike, A new look at the statistical model identification. IEEE Trans. Automat. Control AC-19 (1974) 716-723. System identification and time-series analysis.
  2. A. Antoniadis, I. Gijbels and B. MacGibbon, Non-parametric estimation for the location of a change-point in an otherwise smooth hazard function under random censoring. Scand. J. Statist. 27 (2000) 501-519. [CrossRef] [MathSciNet]
  3. Z.D. Bai, C.R. Rao and Y. Wu, Model selection with data-oriented penalty. J. Statist. Plann. Inference 77 (1999) 103-117. [CrossRef] [MathSciNet]
  4. A. Barron, L. Birgé and P Massart, Risk bounds for model selection via penalization. Probab. Theory Related Fields 113 (1999) 301-413. [CrossRef] [MathSciNet]
  5. M. Basseville and I.V. Nikiforov, Detection of abrupt changes: Theory and application. Prentice Hall Inc. (1993).
  6. B.E. Brodsky and B.S. Darkhovsky, Nonparametric methods in change-point problems. Kluwer Academic Publishers Group (1993).
  7. E. Carlstein, H.-G. Müller and D. Siegmund, Change-point problems. Institute of Mathematical Statistics, Hayward, CA (1994). Papers from the AMS-IMS-SIAM Summer Research Conference held at Mt. Holyoke College, South Hadley, MA July 11-16, 1992.
  8. D. Dacunha-Castelle and E. Gassiat, The estimation of the order of a mixture model. Bernoulli 3 (1997) 279-299. [CrossRef] [MathSciNet]
  9. J. Dedecker, Exponential inequalities and functional central limit theorems for random fields. ESAIM P&S 5 (2001) 77. [CrossRef]
  10. P. Doukhan, Mixing. Springer-Verlag, New York (1994). Properties and examples.
  11. M. Lavielle, On the use of penalized contrasts for solving inverse problems. Application to the DDC (Detection of Divers Changes) problem (submitted).
  12. M. Lavielle, Detection of multiple changes in a sequence of dependent variables. Stochastic Process. Appl. 83 (1999) 79-102. [CrossRef] [MathSciNet]
  13. M. Lavielle and E. Lebarbier, An application of MCMC methods for the multiple change-points problem. Signal Process. 81 (2001) 39-53. [CrossRef]
  14. M. Lavielle and C. Lude na, The multiple change-points problem for the spectral distribution. Bernoulli 6 (2000) 845-869. [CrossRef] [MathSciNet]
  15. M. Lavielle and E. Moulines, Least-squares estimation of an unknown number of shifts in a time series. J. Time Ser. Anal. 21 (2000) 33-59. [CrossRef] [MathSciNet]
  16. G. Lugosi, Lectures on statistical learning theory. Presented at the Garchy Seminar on Mathematical Statistics and Applications, available at (2000).
  17. E. Mammen and A.B. Tsybakov, Asymptotical minimax recovery of sets with smooth boundaries. Ann. Statist. 23 (1995) 502-524. [CrossRef] [MathSciNet]
  18. P. Massart, Some applications of concentration inequalities to statistics. Ann. Fac. Sci. Toulouse Math. (6) 9 (2000) 245-303. [MathSciNet]
  19. F. Móricz, A general moment inequality for the maximum of the rectangular partial sums of multiple series. Acta Math. Hungar. 41 (1983) 337-346. [CrossRef] [MathSciNet]
  20. F.A. Móricz, R.J. Serfling and W.F. Stout, Moment and probability bounds with quasisuperadditive structure for the maximum partial sum. Ann. Probab. 10 (1982) 1032-1040. [CrossRef] [MathSciNet]
  21. V.V. Petrov, Limit theorems of probability theory. The Clarendon Press Oxford University Press, New York (1995). Sequences of independent random variables, Oxford Science Publications.
  22. E. Rio, Théorie asymptotique des processus aléatoires faiblement dépendants. Springer (2000).
  23. G. Schwarz, Estimating the dimension of a model. Ann. Statist. 6 (1978) 461-464. [NASA ADS] [CrossRef] [MathSciNet]
  24. R.J. Serfling, Contributions to central limit theory for dependent variables. Ann. Math. Statist. 39 (1968) 1158-1175. [CrossRef] [MathSciNet]
  25. M. Talagrand, New concentration inequalities in product spaces. Invent. Math. 126 (1996) 505-563. [CrossRef] [MathSciNet]
  26. A.W. van der Vaart, Asymptotic statistics. Cambridge University Press (1998).
  27. A.W. van der Vaart and J.A. Wellner, Weak convergence and empirical processes. Springer-Verlag, New York (1996). With applications to statistics.
  28. V.N. Vapnik, Statistical learning theory. John Wiley & Sons Inc., New York (1998).
  29. Y.-C. Yao, Estimating the number of change-points via Schwarz's criterion. Statist. Probab. Lett. 6 (1988) 181-189. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.