Free Access
Volume 4, 2000
Page(s) 191 - 204
Published online 15 August 2002
  1. J.R. Barra, Notions fondamentales de statistique mathématique. Dunod, Paris (1971).
  2. J.O. Berger, Statistical decision theory and Bayesian analysis, second edition. Springer-Verlag, New York (1985).
  3. J.O. Berger et T. Sellke, Testing a point null hypothesis: The irreconcilability of p-values and evidence. J. Amer. Statist. Assoc. 82 (1987) 112-122. [CrossRef] [MathSciNet]
  4. R.J. Buehler, Fiducial inference, An appreciation, edited by R.A. Fisher. Springer-Verlag, New York, Lecture Notes in Statistics (1980) 109-118.
  5. G. Casella et R.L. Berger, Reconciling Bayesian and frequentist evidence in the one-sided testing problem. J. Amer. Statist. Assoc. 82 (1987) 106-111. [CrossRef] [MathSciNet]
  6. J.M. Dickey, Three multidimensional-integral identities with bayesian applications. Ann. Math. Statist. 39 (1968) 1615-1628. [MathSciNet]
  7. R.A. Fisher, The fiducial argument in statistical inference. Annals of Eugenics 6 (1935) 391-398.
  8. K.R. Gabriel, Simultaneous test procedures — some theory of multiple comparisons. Ann. Math. Statist. 40 (1969) 224-250. [CrossRef] [MathSciNet]
  9. H.M.J. Hung, R.T. O'Neill, P. Bauer et K. Köhne, The behavior of the p-value when the alternative hypothesis is true. Biometrics 53 (1997) 11-22. [CrossRef] [MathSciNet] [PubMed]
  10. J.T. Hwang, G. Casella, C. Robert, M.T. Wells et R.H. Farrell, Estimation of accuracy in testing. Ann. Statist. 20 (1992) 490-509. [CrossRef] [MathSciNet]
  11. S. Karlin, Decision theory for Pólya type distributions. Case of two actions, I, in Proc. Third Berkeley Symposium on Math. Statist. and Prob. Univ. of Calif. Press 1 (1955) 115-128.
  12. A.H. Kroese, E.A. van der Meulen, K. Poortema et W. Schaafsma, Distributional inference. Statistica Neerlandica 49 (1995) 63-82. [CrossRef] [MathSciNet]
  13. E.L. Lehmann, Testing statistical hypotheses, second edition. Wiley, New York (1986).
  14. E.A. van der Meulen et W. Schaafsma, Assessing weights of evidence for discussing classical statistical hypotheses. Statistics & Decisions 11 (1993) 201-220. [MathSciNet]
  15. A. Monfort, Cours de statistique mathématique. Économica, Paris (1982).
  16. G. Morel, Expertises : procédures statistiques d'aide à la décision, Pré-publication. LAST-Université de Tours (1997) 182.
  17. G. Morel, Probabiliser l'espace des décisions, Pub. Sém. 97 : Bru Huber Prum, Paris V (1998) 71-98.
  18. C. Robert, L'analyse statistique bayésienne. Économica, Paris (1992).
  19. D. Salomé, Statistical inference via fiducial methods, Ph.D. Thesis, Rijksuniversiteit Groningen (1998).
  20. W. Schaafsma, J. Tolboom et B. van der Meulen, Discussing truth and falsity by computing a Q-value, in Statistical Data Analysis and Inference, edited by Y. Dodge. North-Holland, Amsterdam (1989) 85-100.
  21. H. Scheffé, The analysis of variance, sixième édition. Wiley, New York (1970).
  22. M.J. Schervish, P-values: What they are and what they are not. Amer. Statist. 50 (1996) 203-206. [CrossRef] [MathSciNet]
  23. P. Thompson, Improving the admissibility screen: Evaluating test statistics on the basis of p-values rather than power. Comm. Statist. Theory Methods 25 (1996) 537-553. [CrossRef] [MathSciNet]
  24. * Recherche réalisée dans le cadre du LAST et du CNRS UPRES-A 6083 de Tours..

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.