Free Access
Volume 3, 1999
Page(s) 1 - 21
Published online 15 August 2002
  1. Ahlfors L., Conformal Invariance. Topics in Geometric Function Theory. McGraw-Hill (1973).
  2. Billingsley P., Probability and Measure. 2nd ed., John Wiley (1986).
  3. Burdzy K. and Lawler G., Rigorous exponent inequalities for random walks. J. Phys. A. 23 (1990) L23-L28. [CrossRef]
  4. Duplantier B., Loop-erased self-avoiding walks in 2D. Physica A 191 (1992) 516-522. [CrossRef]
  5. Fargason C., The percolation dimension of Brownian motion in three dimensions. Ph.D. dissertation, Duke University (1998).
  6. Guttmann A. and Bursill R., Critical exponent for the loop-erased self-avoiding walk by Monte Carlo methods. J. Stat. Phys. 59 (1990) 1-9. [CrossRef]
  7. Kenyon R., The asymptotic distribution of the discrete Laplacian (1998) preprint.
  8. Kesten H., Hitting probabilities of random walks on Formula . Stoc. Proc. Appl. 25 (1987) 165-184. [CrossRef]
  9. Lawler G., Intersections of Random Walks. Birkhäuser-Boston (1991).
  10. Lawler G., A discrete analogue of a theorem of Makarov. Comb. Prob. Computing 2 (1993) 181-199. [CrossRef]
  11. Lawler G., The logarithmic correction for loop-erased walk in four dimensions, Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay 1993), special issue of J. Fourier Anal. Appl. (1995) 347-362.
  12. Lawler G., Cut points for simple random walk. Electron. J. Prob. 1 (1996) 13.
  13. Lawler G., Loop-erased random walk, preprint, to appear in volume in honor of Harry Kesten (1998).
  14. Lawler G. and Puckette E., The intersection exponent for simple random walk (1998) preprint.
  15. Madras N. and Slade G., The Self-Avoiding Walk. Birkhäuser-Boston (1993).
  16. Majumdar S.N., Exact fractal dimension of the loop-erased self-avoiding random walk in two dimensions, Phys. Rev. Lett. 68 (1992) 2329-2331. [CrossRef] [PubMed]
  17. Pemantle R., Choosing a spanning tree for the integer lattice uniformly. Ann. Prob. 19 (1991) 1559-1574. [CrossRef]
  18. Propp J. and Wilson D., How to get a perfectly random sample from a generic Markov chain and generate a random spanning tree of a directed graph. J. Algorithms (to appear).
  19. Pommerenke C., Boundary Behaviour of Conformal Maps, Springer-Verlag (1992).
  20. Werner W., Beurling's projection theorem via one-dimensional Brownian motion. Math. Proc. Cambridge Phil. Soc. 119 (1996) 729-738. [CrossRef]