Issue |
ESAIM: PS
Volume 20, 2016
|
|
---|---|---|
Page(s) | 217 - 237 | |
DOI | https://doi.org/10.1051/ps/2016007 | |
Published online | 18 July 2016 |
Spectral analysis of the Gram matrix of mixture models∗
1 MAP 5, UMR CNRS 8145, Université Paris Descartes, Paris,
France.
florent.benaych-georges@parisdescartes.fr
2 Centrale Supélec, LSS, Université Paris Sud, Gif sur Yvette,
France.
romain.couillet@supelec.fr
Received:
16
October
2015
Accepted:
14
March
2016
This text is devoted to the asymptotic study of some spectral properties of the Gram
matrix WTW built upon a
collection w1,...,wn
∈ Rp of random vectors (the columns of
W), as both
the number n
of observations and the dimension p of the observations tend to infinity and are of
similar order of magnitude. The random vectors w1,...,wn
are independent observations, each of them belonging to one of k classes . The observations of each class
(1 ≤
a ≤ k) are characterized by their
distribution
, where C1,...,Ck
are some non negative definite p × p matrices. The cardinality
na of class
and the dimension p of the observations are
such that na/n
(1 ≤ a ≤
k) and p/n stay bounded away from
0 and + ∞. We provide deterministic equivalents to
the empirical spectral distribution of WTW and to the matrix
entries of its resolvent (as well as of the resolvent of WWT). These deterministic
equivalents are defined thanks to the solutions of a fixed-point system. Besides, we prove
that WTW has asymptotically
no eigenvalues outside the bulk of its spectrum, defined thanks to these deterministic
equivalents. These results are directly used in our companion paper [R. Couillet and F.
Benaych-Georges, Electron. J. Stat. 10 (2016) 1393–1454.],
which is devoted to the analysis of the spectral clustering algorithm in large dimensions.
They also find applications in various other fields such as wireless communications where
functionals of the aforementioned resolvents allow one to assess the communication
performance across multi-user multi-antenna channels.
Mathematics Subject Classification: 60B20 / 15B52 / 62H30
Key words: Random matrices / extreme eigenvalue statistics / mixture models / spectral clustering
© EDP Sciences, SMAI, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.