Free Access
Volume 24, 2020
Page(s) 275 - 293
Published online 23 April 2020
  1. C.M. Bender and S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory. Springer-Verlag, New York (1999). [Google Scholar]
  2. S. Bonehand V.G. Papanicolaou, General asymptotic estimates for the coupon collector problem. J. Comput. Appl. Math. 67 (1996) 277–289. [Google Scholar]
  3. R.K. Brayton, On the asymptotic behavior of the number of trials necessary to complete a set with random selection. Math. Anal. Appl. 7 (1963) 31–61. [CrossRef] [MathSciNet] [Google Scholar]
  4. N.G. de Bruijn, Asymptotic Methods in Analysis, second edition. North Holland, Amsterdam (1961). [Google Scholar]
  5. P. Diaconis and S. Holmes, A Bayesian peek into Feller volume I, in Vol. 64, No. 3, In Memory of D. Basu, Part 2 (2002) 820–841. [Google Scholar]
  6. A.V. Doumas and V.G. Papanicolaou, The Coupon Collector’s problem revisited: asymptotics of the variance. Adv. Appl. Prob. 44 (2012) 166–195. [CrossRef] [Google Scholar]
  7. A.V. Doumas and V.G. Papanicolaou, Asymptotics of the rising moments for the Coupon Collector’s Problem. Electron. J. Probab. 18 (2013) 41. [Google Scholar]
  8. A.V. Doumas and V.G. Papanicolaou, The Coupon Collector’s problem revisited: generalizing the double dixie cup problem of Newman and Shepp. ESAIM: PS 20 (2016) 367–399. [CrossRef] [EDP Sciences] [Google Scholar]
  9. A.V. Doumas and V.G. Papanicolaou, Uniform versus Zipf distribution in a mixing collection process. Stat. Probab. Lett. 155 (2019) 108559. [Google Scholar]
  10. A.V. Doumas and V.G. Papanicolaou, Sampling from a mixture of different groups of coupons. Preprint (2018). [Google Scholar]
  11. R. Durrett, Probability: Theory and Examples, Third Edition, Duxbury Advanced Series, Brooks/Cole—Thomson Learning. Belmont, CA, USA (2005). [Google Scholar]
  12. P. Erdős and A. Rényi, On a classical problem of probability theory. Magyar. Tud. Akad. Mat. Kutató Int. Közl. 6 (1961) 215–220. [Google Scholar]
  13. W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I & II. John Wiley & Sons, Inc., New York (1966). [Google Scholar]
  14. P. Flajolet and R. Sedgewick, Analytic Combinatorics. Cambridge University Press, 1st Ed. (2009). [CrossRef] [Google Scholar]
  15. P. Flajolet, D. Gardy and L. Thimonier, Birthday paradox, coupon collectors, caching algorithms and self-organizing search, Discr. Appl. Math. 39 (1992) 207–229. [CrossRef] [Google Scholar]
  16. L. Holst, On Birthday, Collectors’, Occupancy and other classical Urn problems. Int. Stat. Rev. 54 (1986) 15–27. [Google Scholar]
  17. K.L. Locey and J.T. Lennon, Scaling laws predict global microbial diversity. Proc. Natl. Acad. Sci. USA 113 (2016) 5970–5975. [CrossRef] [Google Scholar]
  18. H.M. Mahmoud, Pólya urn models. CRC Press, New York (2008). [CrossRef] [Google Scholar]
  19. A.W. Marshall, I. Olkin and B. Arnold, Inequalities: Theory of Majorization and Its Applications. Springer, 2nd ed. (2009). [Google Scholar]
  20. P. Neal, The Generalised Coupon Collector Problem. J. Appl. Prob. 45 (2008) 621–629. [CrossRef] [Google Scholar]
  21. M.E.J. Newman, Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46 (2005) 323–351. [Google Scholar]
  22. D.J. Newman and L. Shepp, The double Dixie cup problem. Am. Math. Monthly 67 (1960) 58–61. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.