Free Access
Volume 24, 2020
Page(s) 100 - 112
Published online 03 March 2020
  1. H. Bateman and A. Erdélyi, Vol. 1 of Higher transcendental functions. McGraw-Hill, New York (1953). [Google Scholar]
  2. T. Björk, Arbitrage theory in continuous time. Oxford University Press (2009). [Google Scholar]
  3. J. Cox, J. Ingersoll and S. Ross, A theory of the term structure of interest rates. Theory Valuat. 53 (2005) 126–164. [Google Scholar]
  4. P. Diaconis, K. Khare and L. Saloff-Coste, Gibbs sampling, exponential families and orthogonal polynomials. Stat. Sci. 23 (2008) 151–178. [Google Scholar]
  5. G.K. Eagleson, Polynomial expansions of bivariate distributions. Ann. Math. Stat. 35 (1964) 1208–1215. [CrossRef] [Google Scholar]
  6. S.N. Ethier and R.C. Griffiths, The transition function of a Fleming Viot process. Ann. Probab. 21 (1993) 1571–1590. [Google Scholar]
  7. S.N. Ethier and T.G. Kurtz, Markov processes: characterization and convergence. John Wiley & Sons (2009). [Google Scholar]
  8. B. Griffiths, Stochastic processes with orthogonal polynomial eigenfunctions. J. Comp. Appl. Math. 233 (2008) 739–744. [CrossRef] [Google Scholar]
  9. R.C. Griffiths and D. Spanó, Diffusion processes and coalescent trees. London Mathematical Society Lecture Notes Series (2010). [Google Scholar]
  10. P.A. Jenkins and D. Spanó, Exact simulation of the Wright-Fisher diffusion. Ann. Appl. Probab. 27 (2017) 1478–1509. [Google Scholar]
  11. S. Karlin, A first course in stochastic processes. Academic Press (2014). [Google Scholar]
  12. S. Karlin and J.L. McGregor, The differential equations of birth and death processes, and the Stieltjes moment problem. Trans. Am. Math. Soc. 85 (1957) 489–546. [Google Scholar]
  13. F.P. Kelly, Reversibility and stochastic networks. Cambridge University Press (2011). [Google Scholar]
  14. A.E. Koudou, Lancaster bivariate probability distributions with Poisson, negative binomial and gamma margins. Test 7 (1998) 95–110. [CrossRef] [Google Scholar]
  15. H.O. Lancaster, The structure of bivariate distributions. Ann. Math. Statist. 29 (1958) 719–736. [CrossRef] [Google Scholar]
  16. H.O. Lancaster, Correlations and canonical forms of bivariate distributions. Ann. Math. Stati. 34 (1963) 532–538. [CrossRef] [Google Scholar]
  17. H.O. Lancaster, Joint probability distributions in the Meixner class. J. Roy. Statist. Soc. 37 (1975) 434–443. [Google Scholar]
  18. G. Letac, Lancaster probabilities and Gibbs sampling. Stat. Sci. 23 (2008) 187–191. [Google Scholar]
  19. T.M. Liggett, vol. 113 of Continuous time Markov processes: an introduction. American Mathematical Soc. (2010). [Google Scholar]
  20. E.B. McBride, Obtaining generating functions. Springer-Verlag (1971). [CrossRef] [Google Scholar]
  21. J. Meixner, Orthogonale polynom system mit einer besonderen gestalt der erzeugenden funktion. J. London Math. Soc. 9 (1934) 6–13. [CrossRef] [Google Scholar]
  22. R. Mena and S. Walker, On a construction of Markov models in continuous time. METRON 67 (2009) 303–323. [Google Scholar]
  23. E.D. Rainville, Special functions. Chelsea (1971). [Google Scholar]
  24. W. Schoutens, Vol. 146 of Stochastic processes and orthogonal polynomials. Springer Science & Business Media (2012). [Google Scholar]
  25. E.A. vann Doorn and A.I. Zeifman, Birth-death processes with killing. Stat. Prob. Lett. 72 (2005) 33–42. [CrossRef] [Google Scholar]
  26. S. Walker, S. Hatjispyros and T. Nicoleris, A Fleming-Viot process and bayesian nonparametrics. Ann. Appl. Prob. 17 (2007) 67–80. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.