Free Access
Issue
ESAIM: PS
Volume 24, 2020
Page(s) 294 - 314
DOI https://doi.org/10.1051/ps/2019026
Published online 27 July 2020
  1. R. Abraham and J. Delmas, Local limits of conditioned Galton-Watson trees: the condensation case. Electr. J. Probab. 19 (2014) 56. [Google Scholar]
  2. R. Abraham and J. Delmas, Local limits of conditioned Galton-Watson trees: the infinite spine case. Electr. J. Probab. 19 (2014) 2. [Google Scholar]
  3. R. Abraham and J.-F. Delmas, Asymptotic properties of expansive Galton-Watson trees. Electr. J. Probab. 24 (2019) 15. [Google Scholar]
  4. K. Athreya and P. Ney, Branching processes. Die Grundlehren der mathematischen Wissenschaften, Band 196. Springer-Verlag, New York-Heidelberg (1972). [Google Scholar]
  5. S. Janson, Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation. Probab. Surv. 9 (2012) 103–252. [CrossRef] [MathSciNet] [Google Scholar]
  6. T. Jonnsson and S. Stefansson, Condensation in nongeneric trees. J. Stat. Phys. 142 (2011) 277–313. [Google Scholar]
  7. H. Kesten, Subdiffusive behavior of random walk on a random cluster. Ann. Inst. Henri Poincaré Probab. Stat. 22 (1986) 425–487. [Google Scholar]
  8. I. Kortchemski, Limit theorems for conditioned non-generic Galton-Watson trees. Ann. Inst. Henri Poincaré, Probab. Stat. 51 (2015) 489–511. [CrossRef] [Google Scholar]
  9. J. Neveu, Arbres et processus de Galton-Watson. Ann. Inst. Henri Poincaré 22 (1986) 199–207. [Google Scholar]
  10. L. Overbeck, Martin boundaries of some branching processes. Ann. Inst. Henri Poincaré Probab. Statist. 30 (1994) 181–195. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.