Free Access
Issue
ESAIM: PS
Volume 24, 2020
Page(s) 1 - 20
DOI https://doi.org/10.1051/ps/2019012
Published online 20 January 2020
  1. A. Ayache and J. Lévy Véhel, On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion. Stoch. Process. Appl. 111 (2004) 119–156. [CrossRef] [Google Scholar]
  2. A. Ayache and J. Hamonier, Linear multifractional stable motion: wavelet estimation of H(⋅) and α parameter. Lithuanian Math. J. 55 (2015) 159–192. [CrossRef] [Google Scholar]
  3. A. Ayache and J. Hamonier, Linear multifractional stable motion: an a.s. uniformly convergent estimator for Hurst function. Bernoulli 23 (2017) 1365–1407. [CrossRef] [Google Scholar]
  4. A. Ayache and J. Harmonier, Uniformly and strongly consistent estimation for the Hurst function of a Linear Multifractional Stable Motion. Bernoulli 23 (2017) 1365–1407. [CrossRef] [Google Scholar]
  5. A. Ayache, S. Jaffard and M. S. Taqqu, Wavelet construction of generalized multifractional processes. Rev. Matemát. Iberoamer. 23 (2007) 327–370. [CrossRef] [Google Scholar]
  6. J.M. Bardet and D. Surgailis, Nonparametric estimation of the local Hurst function of multifractional processes. Stoch. Process. Appl. 123 (2013) 1004–1045. [CrossRef] [Google Scholar]
  7. A. Basse-O’Connor, C. Heinrich and M. Podolskij, On limit theory for Lévy semi-stationary process. Bernoulli 24 (2018) 3117–3146. [CrossRef] [Google Scholar]
  8. A. Benassi, P. Bertrand, S. Cohen and J. Istas, Identification of the Hurst index of a step fractional Brownian motion. Stat. Inf. Stoc. Proc. 3 (2000) 101–111. [CrossRef] [MathSciNet] [Google Scholar]
  9. A. Benassi, S. Cohen and J. Istas, Identifying the multifractional function of a Gaussian process. Stat. Proba. Lett. 39 (1998) 337–345. [CrossRef] [Google Scholar]
  10. A. Benassi, S. Jaffard and D. Roux, Gaussian processes and pseudodifferential elliptic operators. Rev. Math. Iberoamer. 13 (1997) 19–90. [CrossRef] [MathSciNet] [Google Scholar]
  11. J.F. Coeurjolly, Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths. Stat. Inf. Stoc. Proc. 4 (2001) 199–227. [CrossRef] [MathSciNet] [Google Scholar]
  12. J.F. Coeurjolly, Identification of multifractional Brownian motion. Bernoulli 11 (2005) 987–1008. [CrossRef] [MathSciNet] [Google Scholar]
  13. J.F. Coeurjolly, Erratum: Identification of multifractional Brownian motion. Bernoulli 12 (2006) 381–382. [CrossRef] [Google Scholar]
  14. S. Cohen and J. Istas, Fractional fields and applications. Springer-Verlag, Berlin (2013). [CrossRef] [Google Scholar]
  15. T.T.N. Dang and J. Istas, Estimation of the Hurst and the stability indices of a H-self-similar stable process. Electr. J. Stat. 11 (2017) 4103–4150. [CrossRef] [Google Scholar]
  16. P. Embrechts and M. Maejima, Self-similar processes. Princeton University Press, Princeton, NJ (2002). [Google Scholar]
  17. K.J. Falconer and J. Lévy Véhel, Multifractional, multistable, and other processes with prescribed local form. J. Theor. Prob. 22 (2009) 375–401. [CrossRef] [Google Scholar]
  18. K.J. Falconer, R. Le Guével and J. Lévy Véhel, Localizable moving average symmetric stable and multistable processes. Stoch. Models 25 (2009) 648–672. [CrossRef] [MathSciNet] [Google Scholar]
  19. J. Istas, Estimating self-similarity through complex variations. Electr. J. Stat. 6 (2012) 1392–1408. [CrossRef] [Google Scholar]
  20. C. Lacaux, Real harmonizable multifractional Lévy motions. Ann. Inst. Henri Poincaré Probab. Statist 40 (2004) 259–277. [CrossRef] [Google Scholar]
  21. R. Le Guével, An estimation of the stability and the localisability functions of multistable processes. Electr. J. Stat. 7 (2013) 1129–1166. [CrossRef] [Google Scholar]
  22. S. Mazur, D. Otryakhin and M. Podolskij, Estimation of the linear fractional stable motion. Preprint arXiv:1802.06373 (2018). [Google Scholar]
  23. M. Meerschaert, D. Wu, and Y. Xiao, Local times of multifractional Brownian sheets. Bernoulli 14 (2008) 865–898. [CrossRef] [MathSciNet] [Google Scholar]
  24. R.F Peltier and J. Lévy Véhel, Multifractional Brownian motion: definition and preliminary results. Technical Report 2645, Rapport de recherche de l’INRIA (1995). [Google Scholar]
  25. G. Samorodnitsky and M.S. Taqqu, Stable Non-Gaussian Random Processes. Chapmann and Hall, New York (1994). [Google Scholar]
  26. S. Stoev and M.S. Taqqu, Stochastic properties of the linear multifractional stable motion. Adv. Appl. Probab. 36 (2004) 1085–1115. [Google Scholar]
  27. S. Stoev and M.S. Taqqu, How rich is the class of multifractional Brownian motions? Stoch. Process. Appl. 116 (2006) 200–221. [CrossRef] [Google Scholar]
  28. S. Stoev, V. Pipiras and M.S. Taqqu, Estimation of the self-similarity parameter in linear fractional stable motion. Signal Process. 82 (2002) 1873–1901. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.