Free Access
Volume 23, 2019
Page(s) 947 - 978
Published online 03 January 2020
  1. E. Aldrich, Wavelets: A package of functions for computing wavelet filters, wavelet transforms and multiresolution analyses. R package version 0.3-0. [Google Scholar]
  2. J. Bezanson, A. Edelman, S. Karpinski and V.B. Shah, Julia: a fresh approach to numerical computing. SIAM Rev. 59 (2017) 65–98. [CrossRef] [Google Scholar]
  3. T.T. Cai and B.W. Silverman, Incorporating information on neighbouring coefficients into wavelet estimation. Sankhyā Ser. B 63 (2001) 127–148. [Google Scholar]
  4. C.M. Carvalho, N.G. Polson and J.G. Scott, The horseshoe estimator for sparse signals. Biometrika 97 (2010) 465–480. [Google Scholar]
  5. A.T. Cemgil and O. Dikmen, Conjugate gamma Markov random fields for modelling nonstationary sources. In M.E. Davies, C.J. James, S.A. Abdallah, M.D. Plumbley (Eds.) Independent Component Analysis and Signal Separation: 7th International Conference, ICA 2007, London, UK, September 9–12, 2007. Proceedings. Springer, Berlin, Heidelberg (2007) pp. 697–705. [CrossRef] [Google Scholar]
  6. A.T. Cemgil, C. Févotte and S.J. Godsill, Variational and stochastic inference for Bayesian source separation. Digit. Signal Process. 17 (2007) 891–913. [Google Scholar]
  7. R.R. Coifman and D.L. Donoho, Translation-invariant de-noising. In A. Antoniadis, G. Oppenheim (Eds.) Wavelets and Statistics. Springer, New York (1995), pp. 125–150. [CrossRef] [Google Scholar]
  8. M.S. Crouse, R.D. Nowak and R.G. Baraniuk, Wavelet-based statistical signal processing using hidden Markov models. IEEE Trans. Signal Process. 46 (1998) 886–902. [Google Scholar]
  9. O. Dikmen and A.T. Cemgil, Gamma Markov random fields for audio source modeling. IEEE Trans. Audio, Speech, Language Process. 18 (2010) 589–601. [CrossRef] [Google Scholar]
  10. D.L. Donoho, De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41 (1995) 613–627. [Google Scholar]
  11. D.L. Donoho and I.M. Johnstone, Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 (1994) 425–455. [Google Scholar]
  12. D.L. Donoho and I.M. Johnstone, Adapting to unknown smoothness via wavelet shrinkage. J. Am. Statist. Assoc. 90 (1995) 1200–1224. [CrossRef] [MathSciNet] [Google Scholar]
  13. X. Fernández-i-Marín, ggmcmc: Analysis of MCMC samples and Bayesian inference. J. Stat. Softw. 70 (2016) 1–20. [Google Scholar]
  14. A.E. Gelfand and A.F.M. Smith, Sampling-based approaches to calculating marginal densities. J. Am. Stat. Assoc. 85 (1990) 398–409. [Google Scholar]
  15. S. Ghosaland and A. van der Vaart, Fundamentals of nonparametric Bayesian inference, vol. 44 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (2017). [Google Scholar]
  16. S. Gugushvili, F. van der Meulen, M. Schauer and P. Spreij, Code accompanying the paper “Bayesian wavelet de-noising with the caravan prior”. Zenodo (2018). [Google Scholar]
  17. S. Gugushvili, F. van der Meulen, M. Schauer and P. Spreij, Fast and scalable non-parametric Bayesian inference for Poisson point processes. Preprint (2018). [Google Scholar]
  18. S. Gugushvili, F. van der Meulen, M. Schauer and P. Spreij, Nonparametric Bayesian volatility learning under microstructure noise. Preprint (2018). [Google Scholar]
  19. S. Gugushvili, F. van der Meulen, M. Schauer and P. Spreij, Nonparametric Bayesian volatility estimation. Edited by J. de Gier, C.E. Praeger, T. Tao. 2017 MATRIX Annals. Springer International Publishing, Cham (2019) 279–302. [CrossRef] [Google Scholar]
  20. I. Johnstone and B. Silverman, EbayesThresh: R programs for empirical Bayes thresholding. J. Stat. Softw. 12 (2005) 1–38. [Google Scholar]
  21. I.M. Johnstone and B.W. Silverman, Needles and straw in haystacks: empirical Bayes estimates of possibly sparse sequences. Ann. Statist. 32 (2004) 1594–1649. [CrossRef] [Google Scholar]
  22. I.M. Johnstone and B.W. Silverman, Empirical Bayes selection of wavelet thresholds. Ann. Statist. 33 (2005) 1700–1752. [CrossRef] [Google Scholar]
  23. T.J. Mitchell and J.J. Beauchamp, Bayesian variable selection in linear regression. With comments by James Berger and C.L. Mallows and with a reply by the authors. J. Amer. Statist. Assoc. 83 (1988) 1023–1036. [CrossRef] [Google Scholar]
  24. E. Moulines, Discussion on the meeting on ‘Statistical approaches to inverse problems’. J. R. Statist. Soc. B 66 (2004) 628–630. [Google Scholar]
  25. D.B. Percival and A.T. Walden, Wavelet methods for time series analysis, vol. 4 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (2000). [Google Scholar]
  26. G. Peyré and J. Fadili, Group sparsity with overlapping partition functions. In 2011 19th European Signal Processing Conference. IEEE (2011) 303–307. [Google Scholar]
  27. N.G. Polson and J.G. Scott, Shrink globally, act locally: sparse Bayesian regularization and prediction. With discussions by Bertrand Clark, C. Severinski, Merlise A. Clyde, Robert L. Wolpert, Jim E. Griffin, Philiip J. Brown, Chris Hans, Luis R. Pericchi, Christian P. Robert and Julyan Arbel. In Vol. 9 of Bayesian statistics. Oxford Univ. Press, Oxford (2011) 501–538. [CrossRef] [Google Scholar]
  28. M.E. Tipping, Sparse Bayesian learning and the Relevance Vector Machine. J. Mach. Learn. Res. 1 (2001) 211–244. [Google Scholar]
  29. S. van der Pas, B. Szabó and A. van der Vaart Uncertainty quantification for the horseshoe (with discussion). Bayesian Anal. 12 (2017) 1221–1274. With a rejoinder by the authors. [Google Scholar]
  30. S.L. van der Pas, B.J.K. Kleijn and A.W. van der Vaart, The horseshoe estimator: posterior concentration around nearly black vectors. Electron. J. Stat. 8 (2014) 2585–2618. [Google Scholar]
  31. B. Whitcher, waveslim: Basic wavelet routines for one-, two- and three-dimensional signal processing. R package version 1.7.5. Available at: (2015). [Google Scholar]
  32. H. Wickham, ggplot2: Elegant graphics for data analysis. Springer-Verlag, New York (2009). [Google Scholar]
  33. P.J. Wolfe, S.J. Godsill and W.-J. Ng, Bayesian variable selection and regularization for time-frequency surface estimation. J. R. Stat. Soc. Ser. B Stat. Methodol. 66 (2004) 575–589. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.