Free Access
Issue
ESAIM: PS
Volume 23, 2019
Page(s) 672 - 696
DOI https://doi.org/10.1051/ps/2019020
Published online 26 September 2019
  1. T.W. Anderson, An Introduction to Multivariate Statistical Analysis. John Wiley & Sons Inc., New York (1984). [Google Scholar]
  2. S.F. Arnold, Application of the theory of products of problems to certain patterned matrics. Ann. Stat. 1 (1973) 682–699. [CrossRef] [Google Scholar]
  3. Z.D. Bai and H. Saranadasa, Effect of high dimension: by an example of a two sample problem. Stat. Sin. 6 (1996) 311–329. [Google Scholar]
  4. A. Basilevsky, Applied Matrix Algebra in the Statistical Sciences. North-Holland, New York (1983). [Google Scholar]
  5. F.P. Carli, A. Ferrante, M. Pavon and G. Picci, A maximum entropy solution of the covariance extension problem for reciprocal processes. IEEE Trans. Autom. Control, 56 (2011) 1999–2012. [CrossRef] [Google Scholar]
  6. F.P. Carli, A. Ferrante, M. Pavon and G. Picci, An efficient algorithm for maximum-entropy extension of block-circulant covariance matrices. Linear Algebra Appl. 439 (2011) 2309–2329. [CrossRef] [Google Scholar]
  7. Y.S. Chow and H. Teicher, Probability Theory: Independence, Interchangeability, Martingale, 3rd edn. Springer-Verlag, New York (1997). [Google Scholar]
  8. C.A. Coelho, The eigenblock and eigenmatrix decomposition of a matrix: its usefulness in statistics-application to the likelihood ratio test for block-circularity. (2013), Preprint. [Google Scholar]
  9. A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications. Springer, New York (2009). [Google Scholar]
  10. C.A. Gotway and N.A.C. Cressie, A spatial analysis of variance applied to soil-water infiltration. Water Resour. Res. 26 (1990) 2695–2703. [CrossRef] [Google Scholar]
  11. A. Gut, Probability: A Graduate Course. Springer-Verlag, New York (2005). [Google Scholar]
  12. A.M. Hartley and D.N. Naik, Estimation of familial correlations under autoregressive circular covariance. Commun. Stat. Theory Methods 30 (2001) 1811–1828. [CrossRef] [Google Scholar]
  13. H. Jiang and S.C. Wang, Moderate deviation principles for classical likelihood ratio tests of high-dimensional normal distributions. J. Multivar. Anal. 156 (2017) 57–69. [CrossRef] [Google Scholar]
  14. T.F. Jiang and F. Yang, Central limit theorems for classical likelihood ratio tests for high-dimensional normal distributions. Ann. Stat. 41 (2013) 2029–2074. [CrossRef] [Google Scholar]
  15. T.F. Jiang and Y.C. Qi, Likelihood ratio tests for high-dimensional normal distributions. Scand. J. Stat. 42 (2015) 988–1009. [CrossRef] [Google Scholar]
  16. N. Kato, T. Yamada and Y. Fujikoshi, High-dimensional asymptotic expansion of LR statistic for testing intraclass correlation structure and its error bound. J. Multivar. Anal. 101 (2010) 101–112. [CrossRef] [Google Scholar]
  17. R. Leiva, Linear discrimination with equicorrelated training vectors. J. Multivar. Anal. 98 (2007) 384–409. [CrossRef] [Google Scholar]
  18. Y.L. Liang, T. Von Rosen and D. Von Rosen, Block circular symmetry in multilevel models, in Research Report 2011, vol. 3, Department of Statistics, Stockholm University (2011). [Google Scholar]
  19. Y.L. Liang, T. Von Rosen and D. Von Rosen, On estimation in multilevel models with block circular symmetric covariance structures. Acta et Commentationes Universitatis Tartuensis de Mathematica 16 (2012) 1–14. [Google Scholar]
  20. Y.L. Liang, T. Von Rosen and D. Von Rosen, On estimation in hierarchical models with block circular covariance structures. Ann. Inst. Stat. Math. 67 (2015) 1–19. [CrossRef] [Google Scholar]
  21. A. Lindquist and G. Picci, Modeling of stationary periodic time series by ARMA representations, in Optimization and Its Applications in Control and Data Sciences, edited by B. Goldengorin. Springer Optimization and Its Applications, Vol 115. Springer, Cham (2016). [Google Scholar]
  22. M. Makoto, K. Kazuyuki and S. Takashi, Likelihood ratio test statistic for block compound symmetry covariance structure and its asymptoic expansion. Technical Report No.15-03, Statistical Research Group, Hiroshima University, Japan (2015). [Google Scholar]
  23. F.J. Marques and C.A. Coelho, Obtaining the exact and near-exact distributions of the likelihood ratio statistic to test circular symmetry through the use of characteristic functions. Comput. Stat. 28 (2013) 2091–2115. [CrossRef] [Google Scholar]
  24. R.J. Muirhead, Aspects of Multivariate Statistical Theory. John Wiley & Sons Inc., New York (1982). [CrossRef] [Google Scholar]
  25. D.K. Nagar, J. Chen and A.K. Gupta, Distribution and percentage points of the likelihood ratio statistic for testing circular symmetry. Comput. Stat. Data Anal. 47 (2004) 79–89. [CrossRef] [Google Scholar]
  26. D.K. Nagar, S.K. Jain and A.K. Gupta, On testing circular stationarity and related models. J. Stat. Comput. Simul. 29 (1988) 225–239. [CrossRef] [Google Scholar]
  27. T. Nahtman and D.V. Rosen, Shift permutation invariance in linear random factor models. Math. Methods Stat. 17 (2008) 173–185. [CrossRef] [Google Scholar]
  28. I. Olkin, Testing and estimation for structures which are circularly symmetric in blocks, in Multivariate Statistical Inference, edited by D.G. Kabe, R.P. Gupta. North-Holland, Amsterdam (1973) 183–195. [Google Scholar]
  29. I. Olkin and S.J. Press, Testing and estimation for a circular stationary model. Ann. Math. Stat. 40 (1969) 1358–1373. [CrossRef] [Google Scholar]
  30. C.R. Rao, Familial correlations or the multivariate generalizations of the intraclass correlation. Curr. Sci. 14 (1945) 66–67. [Google Scholar]
  31. C.R. Rao, Discriminant functions for genetic differentiation and selection. Sankhya 12 (1953) 229–246. [Google Scholar]
  32. A. Roy and R. Leiva, Estimating and testing a structured covariance matrix for three-level multivariate data. Commun. Stat. Theory Methods 40 (2011) 1945–1963. [CrossRef] [Google Scholar]
  33. M.S. Srivastava, Estimation of intraclass correlations in familial data. Biometrika 71 (1984) 177–185. [CrossRef] [Google Scholar]
  34. S.S. Wilks, Sample criteria for testing equality of means, equality of variances, and equality of covariances in a normal multivariate distribution. Ann. Math. Stat. 17 (1946) 257–281. [CrossRef] [Google Scholar]
  35. L.Q. Yi and J.S. Xie, A high-dimensional likelihood ratio test for circular symmetric covariance structure. Commun. Stat. Theory Methods 47 (2018) 1392–1402. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.