Free Access
Issue
ESAIM: PS
Volume 23, 2019
Page(s) 803 - 822
DOI https://doi.org/10.1051/ps/2019008
Published online 24 December 2019
  1. F. Avram, On bilinear forms in Gaussian random variables and Toeplitz matrices. Probab. Theory Relat. Fields 79 (1988) 37–45. [Google Scholar]
  2. S. Bai, M.S. Ginovyan and M.S. Taqqu, Limit theorems for quadratic forms of Lévy-driven continuous-time linear processes. Stoch. Process. Their Appl. 126 (2016) 1036–1065. [Google Scholar]
  3. A. Basse-O’Connor, M.S. Nielsen, J. Pedersen and V. Rohde, A continuous-time framework for ARMA processes. Preprint arXiv:1704.08574v1 (2018). [Google Scholar]
  4. J. Beran, Y. Feng, S. Ghosh and R. Kulik, Long-Memory Processes. Springer, Berlin (2016). [Google Scholar]
  5. D.-P. Brandes and I.V. Curato, On the sample autocovariance of a Lévy driven moving average process when sampled at a renewal sequence. J. Stat. Plan. Inference 203 (2019) 20–38. [Google Scholar]
  6. P.J. Brockwell, Lévy-driven CARMA processes. Ann. Inst. Stat. Math. 53 (2001) 113–124. [Google Scholar]
  7. P.J. Brockwell and R.A. Davis, Time Series: Theory and Methods. Springer Science & Business Media, NY (2013). [Google Scholar]
  8. P.J. Brockwell, R.A. Davis and Y. Yang, Estimation for non-negative Lévy-driven CARMA processes. J. Bus. Econ. Stat. 29 (2011) 250–259. [Google Scholar]
  9. P.J. Brockwell and A. Lindner, Existence and uniqueness of stationary Lévy-driven CARMA processes. Stoch. Process. Their Appl. 119 (2009) 2660–2681. [Google Scholar]
  10. S. Cohen and A. Lindner, A central limit theorem for the sample autocorrelations of a Lévy driven continuous time moving average process. J. Stat. Plan. Inference 143 (2013) 1295–1306. [Google Scholar]
  11. P. Doukhan, G. Oppenheim and M.S. Taqqu, Theory and Applications of Long-Range Dependence. Birkhäuser Boston Inc., Boston, MA (2003). [Google Scholar]
  12. M. Farré, M. Jolis and F. Utzet, Multiple Stratonovich integral and Hu-Meyer formula for Lévy processes. Ann. Probab. 38 (2010) 2136–2169. [Google Scholar]
  13. R. Fox and M.S. Taqqu, Noncentral limit theorems for quadratic forms in random variables having long-range dependence. Ann. Probab. 13 (1985) 428–446. [Google Scholar]
  14. R. Fox and M.S. Taqqu, Central limit theorems for quadratic forms in random variables having long-range dependence. Probab. Theory Relat. Fields 74 (1987) 213–240. [Google Scholar]
  15. L. Giraitis, H.L. Koul and D. Surgailis, Large Sample Inference for Long Memory Processes. World Scientific Publishing Company, Singapore (2012). [CrossRef] [Google Scholar]
  16. L. Giraitis and D. Surgailis, A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotical normality of Whittle’s estimate. Probab. Theory Relat. Fields 86 (1990) 87–104. [Google Scholar]
  17. A.A. Gushchin and U. Küchler, On stationary solutions of delay differential equations driven by a Lévy process. Stoch. Process. Their Appl. 88 (2000) 195–211. [Google Scholar]
  18. J.D. Hamilton, Time Series Analysis, Vol. 2. Princeton University Press, Princeton (1994). [Google Scholar]
  19. U. Küchler and M. Sørensen, Statistical inference for discrete-time samples from affine stochastic delay differential equations. Bernoulli 19 (2013) 409–425. [CrossRef] [Google Scholar]
  20. T. Marquardt, Fractional Lévy processes with an application to long memory moving average processes. Bernoulli 12 (2006) 1099–1126. [CrossRef] [MathSciNet] [Google Scholar]
  21. T. Marquardt and R. Stelzer, Multivariate CARMA processes. Stoch. Process. Their Appl. 117 (2007) 96–120. [Google Scholar]
  22. V. Pipiras and M.S. Taqqu, Long-Range Dependence and Self-Similarity, in Vol. 45. Cambridge University Press, Cambridge (2017). [CrossRef] [Google Scholar]
  23. B.S. Rajput and J. Rosinski, Spectral representations of infinitely divisible processes. Probab. Theory Relat. Fields 82 (1989) 451–487. [Google Scholar]
  24. K. Sato, Lévy Processes and Infinitely Divisible Distributions. Translated fromthe 1990 Japanese original, revised by the author. Vol. 68 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1999). [Google Scholar]
  25. F. Spangenberg, Limit theorems for the sample autocovariance of a continuous-time moving average process with long memory. Preprint arXiv:1502.04851 (2015). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.