Free Access
Issue
ESAIM: PS
Volume 23, 2019
Page(s) 697 - 738
DOI https://doi.org/10.1051/ps/2018022
Published online 01 November 2019
  1. R.R. Bahadur, Rates of convergence of estimates and test statistics. Ann. Math. Statist. 38 (1967) 303–324. [CrossRef] [Google Scholar]
  2. G.F. Barrett and S.G. Donald, Consistent tests for stochastic dominance. Econometrica 71 (2003) 71–104. [Google Scholar]
  3. K. Behnen, A characterization of certain rank-order tests with bounds for the asymptotic relative efficiency. Ann. Math. Statist. 43 (1972) 1839–1851. [CrossRef] [Google Scholar]
  4. K. Behnen, Nichtparametrische Statistik: Zweistichproben Rangtests. Z. Angew. Math. Mech. 61 (1981) T203–T212. [Google Scholar]
  5. K. Behnen and G. Neuhaus, Galton’s test as a linear rank test with estimated scores and its local asymptotic efficiency. Ann. Statist. 11 (1983) 588–599. [CrossRef] [Google Scholar]
  6. K. Behnen and G. Neuhaus, Rank Tests with Estimated Scores and Their Application. Teubner, Stuttgart (1989). [CrossRef] [Google Scholar]
  7. A.A. Borovkov and A.A. Mogulskii, Large deviations and statistical invariance principle. Theory Probab. Appl. 37 (1993) 7–13. [CrossRef] [Google Scholar]
  8. M. Csörgő, S. Csörgő, L. Horváth and D.M. Mason, Weighted empirical and quantile processes. Ann. Probab. 14 (1986) 31–85. [Google Scholar]
  9. G.R. Ducharme and T. Ledwina, Efficient and adaptive nonparametric test for the two-sample problem. Ann. Statist. 31 (2003) 2036–2058. [CrossRef] [Google Scholar]
  10. M.S. Ermakov, Large deviations for empirical probability measures and statistical tests. J. Math. Sci. 81 (1996) 2379–2393. [CrossRef] [Google Scholar]
  11. M.S. Ermakov, On asymptotically efficient statistical inference for moderate deviation probabilities. Theory Probab. Appl. 48 (2004) 622–641. [CrossRef] [Google Scholar]
  12. J. Fan, Test of significance based on wavelet thresholding and Neyman’s truncation. J. Am. Statist. Assoc. 96 (1996) 647–688. [Google Scholar]
  13. J.-D. Fermanian, D. Radulović and M. Wegkamp, Weak convergence of empirical copula process. Bernoulli 10 (2004) 847–860. [CrossRef] [Google Scholar]
  14. P. Groeneboom and G.R. Shorack, Large deviations of goodness of fit statistics and linear combinations of order statistics. Ann. Probab. 9 (1981) 971–987. [Google Scholar]
  15. M.S. Handcock and M. Morris, Relative Distribution Methods in the Social Sciences. Springer, New York (1999). [Google Scholar]
  16. T. Inglot, Generalized intermediate efficiency of goodness of fit tests. Math. Methods Statist. 8 (1999) 487–509. [Google Scholar]
  17. T. Inglot, On large deviation theorem for data-driven Neyman’s statistic. Statist. Probab. Lett. 47 (2000) 411–419. [CrossRef] [Google Scholar]
  18. T. Inglot, Intermediate efficiency by shifting alternatives and evaluation of power. J. Statist. Plan. Inference 140 (2010) 3263–3281. [CrossRef] [Google Scholar]
  19. T. Inglot, Asymptotic behaviour of linear rank statistics for the two-sample problem. Probab. Math. Statist. 32 (2012) 93–116. [Google Scholar]
  20. T. Inglot and T. Ledwina, On probabilities of excessive deviations for Kolmogorov-Smirnov, Cramér-von Mises and chi-square statistics. Ann. Statist. 18 (1990) 1491–1495. [CrossRef] [Google Scholar]
  21. T. Inglot and T. Ledwina, Moderately large deviations and expansions of large deviations for some functionals of weighted empirical process. Ann. Probab. 21 (1993) 1691–1705. [Google Scholar]
  22. T. Inglot and T. Ledwina, Asymptotic optimality of data driven Neyman’s tests for uniformity. Ann. Statist. 24 (1996) 1982–2019. [CrossRef] [Google Scholar]
  23. T. Inglot and T. Ledwina, Intermediate approach to comparison of some goodness-of-fit tests. Ann. Inst. Statist. Math. 53 (2001) 810–834. [CrossRef] [Google Scholar]
  24. T. Inglot and T. Ledwina, Intermediate efficiency of some max-type statistics. J. Statist. Plan. Inference 136 (2006) 2918–2935. [CrossRef] [Google Scholar]
  25. L. Jager and J.A. Wellner, On the “Poisson boundaries” of the family of weighted Kolmogorov statistics, in Festschrift for Herman Rubin, edited by A. DasGupta. IMS, Beachwood, OH (2004) 319–331. [CrossRef] [Google Scholar]
  26. L. Jager and J.A. Wellner, Goodness-of-fit tests via phi-divergences. Ann. Statist. 35 (2007) 2018–2053. [CrossRef] [Google Scholar]
  27. G. Kalish and P.W. Mikulski, The asymptotic behavior of the Smirnov test compared to standard “optimal procedures”. Ann. Math. Statist. 42 (1971) 1742–1747. [CrossRef] [Google Scholar]
  28. W.C.M. Kallenberg, Intermediate efficiency, theory and examples. Ann. Statist. 11 (1983) 1401–1420. [Google Scholar]
  29. W.C.M. Kallenberg, Efficiency, intermediate or Kallenberg, in Encyclopedia of Statistical Sciences, edited by S. Kotz et al., Wiley, New York (1999) 1876–1881. [Google Scholar]
  30. W.C.M. Kallenberg and A.J. Koning, On Wieand’s theorem. Statist. Probab. Lett. 25 (1995) 113–132. [CrossRef] [Google Scholar]
  31. Y. Kitamura, Asymptotic optimality of empirical likelihood for testing moment restrictions. Econometrica 69 (2001) 1661–1672. [Google Scholar]
  32. S. Klonner, The first-order stochastic dominance ordering of the Singh-Maddala distribution. Econ. Lett. 69 (2000) 123–128. [Google Scholar]
  33. A.J. Koning, Approximation of stochastic integrals with applications to goodness-of-fit. Ann. Statist. 20 (1992) 428–454. [CrossRef] [Google Scholar]
  34. T. Ledwina, On the limiting Pitman efficiency of some rank tests of independence. J. Multivar. Anal. 20 (1986) 265–271. [Google Scholar]
  35. T. Ledwina and G. Wyłupek, Nonparametric tests for first order stochastic dominance. TEST 21 (2012) 730–756. [CrossRef] [Google Scholar]
  36. T. Ledwina and G. Wyłupek, Two-sample test against one-sided alternative. Scand. J. Statist. 39 (2012) 358–381. [CrossRef] [Google Scholar]
  37. T. Ledwina and G. Wyłupek, Tests for first-order stochastic dominance. Preprint IM PAN (2013) 746. [Google Scholar]
  38. D.M. Mason and R.L. Eubank, Moderate deviations and intermediate efficiency for lack-of-fit tests. Statist. Risk Model. 29 (2012) 175–187. [CrossRef] [Google Scholar]
  39. S.M. Mirakhmedov, Asymptotic intermediate efficiency of the chi-square and likelihood ratio goodness of fit tests. Preprint arXiv:1610.04135 (2016). [Google Scholar]
  40. G. Neuhaus, H0-contiguity in nonparametric testing problems and sample Pitman efficiency. Ann. Statist. 10 (1982) 575–582. [CrossRef] [Google Scholar]
  41. G. Neuhaus, Local asymptotics for linear rank statistics with estimated score functions. Ann. Statist. 15 (1987) 491–512. [CrossRef] [Google Scholar]
  42. Y. Nikitin, Asymptotic Efficiency of Nonparametric Tests. Cambridge University Press, Cambridge (1995). [CrossRef] [Google Scholar]
  43. E.J.G. Pitman, Notes on Nonparametric Statistical Inference. Institute of Statistics, University of North Carolina, Chapel Hill (1948). [Google Scholar]
  44. E.J.G. Pitman, Some Basic Theory for Statistical Inference. Wiley, NY (1979). [Google Scholar]
  45. F. Schmid and M. Trede, Testing for first order stochastic dominance: a new distribution-free test. Statistician 45 (1996) 371–380. [Google Scholar]
  46. R.J. Serfling, Approximation Theorems of Mathematical Statistics. Wiley, New York (1980). [CrossRef] [Google Scholar]
  47. G.R. Shorack, Probability for Statisticians. Springer, New York (2000). [Google Scholar]
  48. B.K. Sinha and H.S. Wieand, Bounds on the efficiencies of four commonly used nonparametric tests of location. Sankhyā, Ser. B 39 (1977) 121–129. [Google Scholar]
  49. V.S. Tsirel’son, The density of the distribution of the maximum of a Gaussian process. Theory Probab. Appl. 20 (1975) 847–856. [CrossRef] [Google Scholar]
  50. H.S. Wieand, A condition under which the Pitman and Bahadur approaches to efficiency coincide. Ann. Statist. 4 (1976) 1003–1011. [CrossRef] [Google Scholar]
  51. C.S. Yu, Pitman efficiencies of Kolmogorov-Smirnov tests. Ann. Math. Statist. 42 (1971) 1595–1605. [CrossRef] [Google Scholar]
  52. S. Zacks, Pitman efficiency, in Encyclopedia of Statistical Sciences. Edited by S. Kotz et al. Wiley, New York (2006) 6136–6140. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.