Free Access
Issue
ESAIM: PS
Volume 23, 2019
Page(s) 922 - 946
DOI https://doi.org/10.1051/ps/2019016
Published online 03 January 2020
  1. G. Alsmeyer, Convergence rates in the law of large numbers for martingales. Stochastic Process. Appl. 36 (1990) 181–194. [CrossRef] [Google Scholar]
  2. P. Assouad, Espaces p-lisses et q-convexes, inégalités de Burkholder. Séminaire Maurey-Schwartz (1975). [Google Scholar]
  3. K. Azuma, Weighted sums of certain dependent random variables. Tôhoku Math. J. 19 (1967) 357–367. [CrossRef] [Google Scholar]
  4. L.E. Baum and M. Katz, Convergence rates in the law of large numbers. Trans. Amer. Math. Soc. 120 (1965) 108–123. [CrossRef] [Google Scholar]
  5. D.L. Burkholder, Distribution function inequalities for martingales. Ann. Probab. 1 (1973) 19–42. [Google Scholar]
  6. V.H. de la Peña, A general class of exponential inequalities for martingales and ratios. Ann. Probab. 27 (1999) 537–564. [Google Scholar]
  7. J. Dedecker and F. Merlevède, Convergence rates in the law of large numbers for Banach-valued dependent variables. Teor. Veroyatn. Primen. 52 (2007) 562–587. [CrossRef] [Google Scholar]
  8. I. Fazekas, Burkholder’s inequality for multiindex martingales. Ann. Math. Inf . 32 (2005) 45–51. [Google Scholar]
  9. X. Fan, I. Grama and Q. Liu, Large deviation exponential inequalities for supermartingales. Electron. Commun. Probab. 17 (2012) 59. [Google Scholar]
  10. X. Fan, I. Grama and Q. Liu, Exponential inequalities for martingales with applications. Electron. J. Probab. 20 (2015) 1. [Google Scholar]
  11. X. Fan, I. Grama and Q. Liu, Deviation inequalities for martingales with applications. J. Math. Anal. Appl. 448 (2017) 538–566. [Google Scholar]
  12. A. Gut, Marcinkiewicz laws and convergence rates in the law of large numbers for random variables with multidimensional indices. Ann. Probab. 6 (1978) 469–482. [Google Scholar]
  13. E. Haeusler, An exact rate of convergence in the functional central limit theorem for special martingale difference arrays. Z. Wahrsch. Verw. Gebiete 65 (1984) 523–534. [CrossRef] [Google Scholar]
  14. S. Hao, Convergence rates in the law of large numbers for arrays of Banach valued martingale differences. Abstr. Appl. Anal. (2013) 715054. [Google Scholar]
  15. S. Hao and Q. Liu, Convergence rates in the law of large numbers for arrays of martingale differences. J. Math. Anal. Appl. 417 (2014) 733–773. [Google Scholar]
  16. W. Hoeffding, Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58 (1963) 13–30. [Google Scholar]
  17. W.B. Johnson and G. Schechtman, Martingale inequalities in rearrangement invariant function spaces. Israel J. Math. 64 (1988) 267–275. [CrossRef] [Google Scholar]
  18. D. Khoshnevisan, Multiparameter processes, Springer Monographs in Mathematics. An introduction to random fields. Springer-Verlag, New York (2002). [Google Scholar]
  19. A. Kuczmaszewska and Z.A. Lagodowski, Convergence rates in the SLLN for some classes of dependent random fields. J. Math. Anal. Appl. 380 (2011) 571–584. [Google Scholar]
  20. Z.A. Lagodowski, An approach to complete convergence theorems for dependent random fields via application of Fuk-Nagaev inequality. J. Math. Anal. Appl. 437 (2016) 380–395. [Google Scholar]
  21. E. Lesigne and D. Volný, Large deviations for martingales. Stochastic Process. Appl. 96 (2001) 143–159. [CrossRef] [Google Scholar]
  22. S.V. Nagaev, On probability and moment inequalities for supermartingales and martingales. Vol. 79 of Proceedings of the Eighth Vilnius Conference on Probability Theory and Mathematical Statistics, Part II 2002 (2003) 35–46. [Google Scholar]
  23. G. Pisier, Martingales with values in uniformly convex spaces. Israel J. Math. 20 (1975) 326–350. [CrossRef] [Google Scholar]
  24. L. Rüschendorf, Ordering of distributions and rearrangement of functions. Ann. Probab. 9 (1981) 276–283. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.