Free Access
Volume 23, 2019
Page(s) 770 - 796
Published online 20 December 2019
  1. J. Azéma, M. Duflo and D. Revuz, Mesures invariantes des processus de Markov récurrents. Sém. Proba. III, Vol. 88 of Lecture Notes in Mathematics. Springer, Berlin (1969) 24–33. [CrossRef] [Google Scholar]
  2. M. Benaïm, S. Le Borgne, F. Malrieu and P.-A. Zitt, Qualitative properties of certain piecewise deterministic Markov processes. Ann. Inst. Henri Poincaré Probab. Statist. 51 (2015) 1040–1075. [CrossRef] [Google Scholar]
  3. F. Bolley, Separability and completeness for the wasserstein distance. Sém. Proba. XLI, Vol. 1934 of Lecture Notes in Mathematics. Springer, Berlin (2008) 371–377. [CrossRef] [Google Scholar]
  4. P. Brémaud and L. Massoulié, Stability of nonlinear Hawkes processes. Ann. Probab. 24 (1996) 1563–1588. [Google Scholar]
  5. J. Chevallier, Mean-field limit of generalized Hawkes processes. Stoch. Proc. Appl. 127 (2017) 3870–3912. [CrossRef] [Google Scholar]
  6. J. Chevallier, M.J. Caceres, M. Doumic and P. R. Bouret, Microscopic approach of a time elapsed neural model. Math. Models Methods Appl. Sci. 25 (2015) 2669–2719. [Google Scholar]
  7. A. Dassios and H. Zhao, Exact simulation of Hawkes process with exponentially decaying intensity. Electron. Commun. Probab. 18 (2013) 1–13. [CrossRef] [Google Scholar]
  8. S. Delattre, N. Fournier and M. Hoffmann, Hawkes processes on large networks. Ann. App. Probab. 26 (2016) 216–261. [CrossRef] [Google Scholar]
  9. S. Ditlevsen and E. Löcherbach, Multi-class oscillating systems of interacting neurons. Stoch. Proc. Appl. 127 (2017) 1840–1869. [CrossRef] [Google Scholar]
  10. S. Ditlevsen, K.P. Yip and N.H Holstein-Rathlou, Parameter estimation in a stochastic model of the tubuloglomerular feedback mechanism in a rat nephron. Math. Biosci. 194 (2005) 49–69. [Google Scholar]
  11. D. Down, S.P. Meyn and R.L. Tweedie, Exponential and uniform ergodicity of Markov processes. Ann. Probab. 23 (1995) 1671–1691. [Google Scholar]
  12. N. Hansen, P.R Bouret and V. Rivoirard, Lasso and probabilistic inequalities for multivariate point processes. Bernoulli 21 (2015) 83–143. [CrossRef] [Google Scholar]
  13. A.G. Hawkes, Spectra of some self-exciting and mutually exciting point Processes. Biometrika, 58 (1971) 83–90. [CrossRef] [Google Scholar]
  14. A.G. Hawkes and D. Oakes, A cluster process representation of a self-exciting process. J. Appl. Probab. 11 (1974) 93–503. [Google Scholar]
  15. J. Jacod, Multivariate Point Processes: Predictable Projection, Radon-Nikodym Derivatives, Representation of Martingales. Z. Wahrscheinlichkeitstheorie verw. Gebiete 31 (1975) 235–253. [CrossRef] [Google Scholar]
  16. D.W. Kammler, Approximation with sums of exponentials in lp[0, ). J. Approx. Theory 16 (1976) 384–408. [Google Scholar]
  17. E. Löcherbach, Convergence to equilibrium for time inhomogeneous jump diffusions with state dependent jump intensity. Preprint arXiv:1712.03507 (2017). [Google Scholar]
  18. E. Löcherbach and D. Loukianova, On nummelin splitting for continuous time harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions. Stoch. Process. Appl. 118 (2008) 1301–1321. [CrossRef] [Google Scholar]
  19. S.P. Meyn and R.L. Tweedie, Stability of Markovian processes III : Foster-Lyapunov criteria for continuous-time processes. Adv. Appl. Probab. 25 (1993) 487–548. [Google Scholar]
  20. S.T. Rachev, Probability Metrics and the Stability of Stochastic Models. John Wiley and Sons, Chichester, USA (1991). [Google Scholar]
  21. M.B. Raad, S. Ditlevsen and E. Löcherbach, Age dependent Hawkes process. Preprint arXiv:1806.06370 (2018). [Google Scholar]
  22. A.C. Skeldon and I. Purvey, The effect of different forms for the delay in a model of the nephron. Math. Biosci. Eng. 2 (2005) 97–109. [CrossRef] [PubMed] [Google Scholar]
  23. L. Zhu, Large deviations for Markovian nonlinear Hawkes processes. Ann. Appl. Probab. 25 (2015) 548–581. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.