Free Access
Volume 23, 2019
Page(s) 112 - 135
Published online 26 March 2019
  1. S. Asmussen and J. Rosiński, Approximations of small jumps of Lévy processes with a view towards simulation. J. Appl. Probab. 38 (2001) 482–493. [Google Scholar]
  2. R.N. Bhattacharya and R.R. Rao, Normal Approximation and Asymptotic Expansions. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons (1976). [Google Scholar]
  3. S.G. Bobkov, Berry-Esseen bounds and Edgeworth expansions in the central limit theorem for transport distances. Probab. Theory Relat. Fields 170 (2017) 229–262. [Google Scholar]
  4. S.G. Bobkov, G.P. Chistyakov and F. Götze, Rate of convergence and Edgeworth-type expansion in the entropic central limit theorem. Ann. Probab. 41 (2013) 2479–2512. [Google Scholar]
  5. T. Bonis, Rates in the Central Limit Theorem and Diffusion Approximation via Stein’s Method. Preprint arXiv:1506.06966v3 (2016). [Google Scholar]
  6. A.M. Davie, Pathwise Approximation of Stochastic Differential Equations Using Coupling. Available at: (2014). [Google Scholar]
  7. A.M. Davie, Polynomial Perturbations of Normal Distributions. Available: (2016). [Google Scholar]
  8. U. Einmahl, Extensions of results of Komlós, Major, and Tusnády to the multivariate case. J. Multivar. Anal. 28 (1989) 20–68. [Google Scholar]
  9. N. Fournier, Simulation and approximation of Lévy-driven stochastic differential equations. ESAIM: PS 15 (2011) 233–248. [CrossRef] [EDP Sciences] [Google Scholar]
  10. D. Godinho, Asymptotic of grazing collisions for the spatially homogeneous Boltzmann equations for soft and Coulomb potentials. Stoch. Process. Appl. 123 (2013) 3987–4039. [CrossRef] [Google Scholar]
  11. F. Götze and A.Y. Zaitsev, Rates of approximation in the multidimensional invariance principle for sums of i.i.d. random vectors with finite moments. J. Math. Sci. 167 (2010) 495–500. [CrossRef] [Google Scholar]
  12. J. Jacod, The Euler scheme for Lévy driven stochastic differential equations: limit theorems. Ann. Probab. 32 (2004) 1830–1872. [Google Scholar]
  13. J. Jacod and P. Protter, Asymptotic error distributions for the Euler method for stochastic differential equations. Ann. Probab. 26 (1998) 267–307. [Google Scholar]
  14. A. Kohatsu-Higa and P. Protter, The Euler scheme for SDEs driven by semimartingales, in Stochastic Analysis on Infinite Dimensional Spaces (1994) 141–151. [Google Scholar]
  15. J. Komlós, P. Major and G. Tusnády, An approximation of partial sums of independent RV’-s, and the sample of DF.I. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 32 (1975) 111–131. [CrossRef] [Google Scholar]
  16. V.V. Petrov, Sums of Independent Random Variables. Springer-Verlag (1975). [CrossRef] [Google Scholar]
  17. E. Rio, Upper bounds for minimal distances in the central limit theorem. Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009) 802–817. [CrossRef] [MathSciNet] [Google Scholar]
  18. E. Rio, Asymptotic constants for minimal distances in the central limit theorem. Electron. Commun. Probab. 16 (2011) 96–103. [CrossRef] [Google Scholar]
  19. M. Talagrand, Transportation cost for Gaussian and other product measures. Geom. Funct. Anal. 6 (1996) 587–600. [CrossRef] [MathSciNet] [Google Scholar]
  20. C. Villani, Topics in Optimal Transportation. Vol. 58 of Graduate Studies in Mathematics. American Mathematical Society (2003). [CrossRef] [Google Scholar]
  21. A.Y. Zaitsev, Multidimensional version of the results of Komlós, Major and Tusnády for vectors with finite exponential moments. ESAIM: PS 2 (1998) 41–108. [CrossRef] [EDP Sciences] [Google Scholar]
  22. A.Y. Zaitsev, Estimates for the strong approximation in multidimensional central limit theorem, in Proceedings of the International Congress of Mathematicians III, Beijing (2002) 107–116. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.