Free Access
Issue
ESAIM: PS
Volume 23, 2019
Page(s) 37 - 67
DOI https://doi.org/10.1051/ps/2018012
Published online 11 March 2019
  1. A. Astrauskas, J.B. Lévy and M.S. Taqqu, The asymptotic depedence structure of the linear frational Lévy motion. Lith. Math. J. 31 (1991) 1–19. [CrossRef] [Google Scholar]
  2. A. Ayache and J. Hamonier, Linear multifractional stable motion: fine path properties. Rev. Mat. Iberoam. 30 (2014) 1301–1354. [CrossRef] [Google Scholar]
  3. K.J. Falconer, Tangent fields and the local structure of random fields. J. Theor. Probab. 15 (2002) 731–750. [CrossRef] [MathSciNet] [Google Scholar]
  4. K.J. Falconer, The local structure of random processes. J. Lond. Math. Soc. 67 (2003) 657–672. [CrossRef] [MathSciNet] [Google Scholar]
  5. K.J. Falconer and J. Lévy Véhel Multifractional, multistable, and other processes with prescribed local form. J. Theor. Probab. 22 (2009) 375–401. [CrossRef] [Google Scholar]
  6. K.J. Falconer and L. Liu, Multistable Processes and Localisability. Stoch. Models 28 (2012) 503–526. [CrossRef] [Google Scholar]
  7. K.J. Falconer, R. Le Guével and J. Lévy Véhel Localizable moving average symmetric stable and multistable processes. Stoch. Models 25 (2009) 648–672. [CrossRef] [MathSciNet] [Google Scholar]
  8. R. Le Guével and J. Lévy Véhel Incremental moments and Hölder exponents of multifractional multistable processes. ESAIM: PS 17 (2013) 135–178. [CrossRef] [EDP Sciences] [Google Scholar]
  9. M.M. Meerschaert and F. Sabzikar, Tempered fractional stable motion. J. Theoret. Probab. 29 (2016) 681–706. [CrossRef] [Google Scholar]
  10. J. Nolan, Bibliography on stable distributions, processes and related topics. Available at: http://academic2.american.edu/jpnolan/stable/StableBibliography.pdf (2010). [Google Scholar]
  11. G. Samorodnitsky and M.S. Taqqu, Stable Non-Gaussian Random Processes. Chapman and Hall, London (1994). [Google Scholar]
  12. S. Stoev and M.S. Taqqu, Stochastic properties of the linear multifractional stable motion. Adv. Appl. Probab. 36 (2004) 1085–1115. [Google Scholar]
  13. S. Stoev and M.S. Taqqu, Path properties of the linear multifractional stable motion. Fractals 13 (2005) 157–178. [Google Scholar]
  14. N.W. Watkins, D. Credgington, B. Hnat, S.C. Chapman, M.P. Freeman and J. Greenhough, Towards synthesis of solar wind and geomagnetic scaling exponents: a fractional Lévy motion model. Space Sci. Rev. 121 (2005) 271–284. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.