Free Access
Volume 23, 2019
Page(s) 739 - 769
Published online 20 December 2019
  1. D. Aldous and P. Diaconis, Shuffling cards and stopping times. Am. Math. Mon. 93 (1986) 333–348. [Google Scholar]
  2. D. Aldous and P. Diaconis, Strong uniform times and finite random walks. Adv. Appl. Math. 97 (1987) 69–97. [Google Scholar]
  3. R. Basu, J. Hermon and Y. Peres, Characterization of cutoff for reversible Markov chains. Ann. Probab. 45 (2017) 1448–1487. [Google Scholar]
  4. G.-Y. Chen and L. Saloff-Coste, The cutoff phenomenon for ergodic Markov processes. Electron. J. Probab. 13 (2008) 26–78. [Google Scholar]
  5. G.-Y. Chen and L. Saloff-Coste, Computing cutoff times of birth and death chains. Electron. J. Probab. 20 (2015) 1–47. [Google Scholar]
  6. M.C.H. Choi and P. Patie, A sufficient condition for continuous-time finite skip-free Markov chains to have real eigenvalues, in Mathematical and Computational Approaches in Advancing Modern Science and Engineering, edited by J. Bélair, I. Frigaard, H. Kunze, R. Makarov, R. Melnik and R. Spiteri. Springer, Switzerland (2016) 529–536. [CrossRef] [Google Scholar]
  7. S.B. Connor, Separation and coupling cutoffs for tuples of independent Markov processes. Lat. Am. J. Probab. Math. Stat. 7 (2010) 65–77. [Google Scholar]
  8. P. Diaconis and J.A. Fill, Strong stationary times via a new form of duality. Ann. Probab. 18 (1990) 1483–1522. [Google Scholar]
  9. P. Diaconis and L. Miclo, On times to quasi-stationarity for birth and death processes. J. Theor. Probab. 22 (2009) 558–586. [CrossRef] [MathSciNet] [Google Scholar]
  10. P. Diaconis and L. Saloff-Coste, What do we know about the Metropolis algorithm? J. Comput. Syst. Sci. 57 (1998) 20–36. [Google Scholar]
  11. P. Diaconis and L. Saloff-Coste, Separation cut-offs for birth and death chains. Ann. Appl. Probab. 16 (2006) 2098–2122. [Google Scholar]
  12. P. Diaconis and M. Shahshahani, Generating a random permutation with random transpositions. Z. Wahrscheinlichkeitstheor. verw. Geb. 57 (1981) 159–179. [CrossRef] [Google Scholar]
  13. J. Ding, E. Lubetzky and Y. Peres, Total variation cutoff in birth-and-death chains. Probab. Theory Relat. Fields 146 (2010) 61–85. [Google Scholar]
  14. A.V. Doumas and V.G. Papanicolaou, The coupon collector’s problem revisited: generalizing the double dixie cup problem of Newman and Shepp. ESAIM: PS 20 (2016) 367–399. [CrossRef] [EDP Sciences] [Google Scholar]
  15. P.L. Erdłs and A. Rényi, On a classical problem of probability theory. Publ. Math. Inst. Hung. Acad. Sci. Ser. A 6 (1961) 215–220. [Google Scholar]
  16. W. Feller, An Introduction to Probability Theory and Its Applications, 2nd edn., Vol. 2. John Wiley & Sons, NJ (1971). [Google Scholar]
  17. J.A. Fill, An exact formula for the move-to-front rule for self-organizing lists. J. Theor. Probab. 9 (1996) 113–160. [CrossRef] [Google Scholar]
  18. J.A. Fill, On hitting times and fastest strong stationary times for skip-free and more general chains. J. Theor. Probab. 22 (2009) 587–600. [CrossRef] [MathSciNet] [Google Scholar]
  19. J.A. Fill, The passage time distribution for a birth-and-death chain: strong stationary duality gives a first stochastic proof. J. Theor. Probab. 22 (2009) 543–557. [CrossRef] [MathSciNet] [Google Scholar]
  20. J.A. Fill and V. Lyzinski, Strong stationary duality for diffusion processes. J. Theor. Probab. 29 (2016) 1298–1338. [CrossRef] [Google Scholar]
  21. J. Hermon, H. Lacoin and Y. Peres, Total variation and separation cutoffs are not equivalent and neither one implies the other. Electron. J. Probab. 21 (2016) 1–36. [Google Scholar]
  22. L. Holst, Extreme value distributions for random coupon collector and birthday problems. Extremes 4 (2001) 129–145. [Google Scholar]
  23. S. Karlinand J. McGregor, Coincidence properties of birth and death processes. Pac. J. Math. 9 (1959) 1109–1140. [CrossRef] [Google Scholar]
  24. J. Keilson, Log-concavity and log-convexity in passage time densities of diffusion and birth-death processes. J. Appl. Probab. 8 (1971) 391–398. [Google Scholar]
  25. H. Lacoin, The cutoff profile for the simple-exclusion process on the circle. Ann. Probab. 44 (2016) 3399–3430. [Google Scholar]
  26. D. Levin, Y. Peres and E. Wilmer, Markov Chains and Mixing Times, 2nd edn. American Mathematical Society, Rhode Island (2017). [CrossRef] [Google Scholar]
  27. P. Lorek, Generalized Gambler’s ruin problem: explicit formulas via Siegmund duality. Methodol. Comput. Appl. Probab. 19 (2017) 603–613. [Google Scholar]
  28. P. Lorek, Siegmund duality for Markov chains on partially ordered state spaces. Probab. Eng. Inf. Sci. 32 (2018) 495–521. [Google Scholar]
  29. P. Lorek and P. Markowski, Monotonicity requirements for efficient exact sampling with Markov chains. Markov Process. Relat. Fields 23 (2017) 485–514. [Google Scholar]
  30. P. Lorek and R. Szekli, Strong stationary duality for Möbius monotone Markov chains. Queueing Syst. 71 (2012) 79–95. [Google Scholar]
  31. E. Lubetzky and A. Sly, Cutoff for the Ising model on the lattice. Invent. Math. 191 (2013) 719–755. [Google Scholar]
  32. Y.-H. Mao, C. Zhang and Y.-h. Zhang, Separation cutoff for upward skip-free chains. J. Appl. Probab. 1 (2016) 299–306. [Google Scholar]
  33. L. Miclo, On absorption times and Dirichlet eigenvalues. ESAIM: PS 14 (2010) 117–150. [CrossRef] [EDP Sciences] [Google Scholar]
  34. P. Neal, The generalised coupon collector problem. J. Appl. Probab. 45 (2008) 621–629. [Google Scholar]
  35. D.J. Newman, The double dixie cup problem. Am. Math. Mon. 67 (1960) 58–61. [Google Scholar]
  36. I. Pak and V.H. Vu, On mixing of certain random walks, cutoff phenomenon and sharp threshold of random matroid processes. Discrete Appl. Math. 110 (2001) 251–272. [Google Scholar]
  37. G.-C. Rota, On the foundations of combinatorial theory I. Theory of Möbius functions. Probab. Theory and Relat. Fields 368 (1964) 340–368. [Google Scholar]
  38. D. Siegmund, The equivalence of absorbing and reflecting barrier problems for stochastically monotone Markov processes. Ann. Probab. 4 (1976) 914–924. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.