Free Access
Volume 23, 2019
Page(s) 217 - 244
Published online 01 May 2019
  1. M. Benaim, J.-C. Fort and G. Pagès, Convergence of the one-dimensional Kohonen algorithm. Adv. Appl. Probab. 30 (1998) 850–869. [Google Scholar]
  2. R. Bhattacharya and E.C. Waymire, An approach to the existence of unique invariant probabilities for Markov processes. János Bolyai Math. Soc. I (2002) 181–200. [Google Scholar]
  3. J.A. Bucklew, T.G. Kurtz and W.A. Sethares, Weak convergence and local stability properties of fixed step size recursive algorithms. IEEE Trans. Inf. Theory 39 (1993) 966–978. [Google Scholar]
  4. F. Comte and É. Renault, Long memory in continuous-time stochastic volatility models. Math. Financ. 8 (1998) 291–323. [Google Scholar]
  5. P. Diaconis and D. Freedman, Iterated random functions. SIAM Rev. 41 (1999) 45–76. [CrossRef] [MathSciNet] [Google Scholar]
  6. S.N. Ethier and T.G. Kurtz, Markov Processes: Characterization and Convergence. Wiley, New York (1986). [CrossRef] [Google Scholar]
  7. E. Eweda, Convergence analysis of an adaptive filter equipped with the sign-sign algorithm. IEEE Trans. Automat. Control 40 (1995) 1807–1811. [CrossRef] [Google Scholar]
  8. E. Eweda, Analysis and design of a signed regressor LMS algorithm for stationary and nonstationary adaptive filtering with correlated Gaussian data. IEEE Trans. Circ. Syst. 37 (1990) 1367–1374. [CrossRef] [Google Scholar]
  9. G. Fort, É. Moulines, A. Schreck and M. Vihola, Convergence of Markovian stochastic approximation with discontinuous dynamics. SIAM J. Control Optim. 54 (2016) 866–893. [CrossRef] [Google Scholar]
  10. J. Gatheral, Th. Jaisson and M. Rosenbaum, Volatility is rough. Quant. Financ. 18 (2018) 933–949. [CrossRef] [Google Scholar]
  11. S. Geman, Some averaging and stability results for random differential equations. SIAM J. Appl. Math. 36 (1979) 86–105. [Google Scholar]
  12. L. Gerencsér, On a class of mixing processes. Stochastics 26 (1989) 165–191. [Google Scholar]
  13. L. Gerencsér, On fixed gain recursive estimation processes. Retrieval code for full electronic manuscript: 56854. J. Math. Syst. Estim. Control 6 (1996) 355–358. [Google Scholar]
  14. L. Gerencsér, Strong approximation of the recursive prediction error estimator of the parameters of an ARMA process. Syst. Control Lett. 21 (1993) 347–351. [Google Scholar]
  15. L. Gerencsér, On Rissanen’s predictive stochastic complexity for stationary ARMA processes. J. Stat. Plan. Inference 41 (1994) 303–325. [Google Scholar]
  16. L. Gerencsér, AR() estimation and nonparametric stochastic complexity. IEEE Trans. Inf. Theory 38 (1992) 1768–1778. [Google Scholar]
  17. L. Gerencsér, Stability of random iterative mappings, in Modeling Uncertainty. An Examination of Stochastic Theory, Methods,and Applications, edited by M. Dror, P. L’Écuyer and F. Szidarovszky. Vol. 46 of International Series in Operations Research and Management Science. Kluwer Academic Publishers, Boston (2002) 359–371. [CrossRef] [Google Scholar]
  18. L. Gerencsér, A representation theorem for the error of recursive estimators. SIAM J. Control Optim. 44 (2006) 2123–2188. [CrossRef] [Google Scholar]
  19. L. Gerencsér, Rate of convergence of recursive estimators. SIAM J. Control Optim. 30 (1992) 1200–1227. [CrossRef] [Google Scholar]
  20. L. Gerencsér, G. Molnár-Sáska, Gy. Michaletzky, G. Tusnády and Zs. Vágó, New methods for the statistical analysis of Hidden Markov models, in Proceedings of the 41st IEEE Conference on Decision and Control (2002), Las Vegas, USA. IEEE Press, New York (2002) 2272–2277. [CrossRef] [Google Scholar]
  21. L. Giraitis, H.L. Koul and D. Surgailis, Large Sample Inference for Long Memory Processes. Imperial College Press, London (2012). [CrossRef] [Google Scholar]
  22. M. Hairer and J. Mattingly, Yet another look at Harris’ ergodic theorem for Markov chains, in Seminar on Stochastic Analysis, Random Fields and Applications VI, edited by R. Dalang, M. Dozzi and F. Russo. Vol. 63 of Progress in Probability. Springer, Basel (2011) 109–117. [Google Scholar]
  23. Ph. Hartman, Ordinary differential equations. Vol. 38 of Classics in Applied Mathematics, 2nd edition. SIAM, PA (2002). [Google Scholar]
  24. O. Kallenberg, Foundations of Modern Probability, 2nd edition. Springer, NY (2002). [CrossRef] [Google Scholar]
  25. T. Kawata, Fourier Analysis in Probability Theory. Academic Press, NY (1972). [Google Scholar]
  26. R. Koenker and G. Bassett, Jr Regression quantiles. Econometrica 46 (1978) 33–50. [Google Scholar]
  27. T. Kohonen, Analysis of a simple self-organising process. Biol. Cybern. 44 (1982) 135–140. [Google Scholar]
  28. S. Laruelle and G. Pagès, Stochastic approximation with averaging innovation applied to finance. Monte Carlo Methods Appl. 18 (2012) 1–51. [Google Scholar]
  29. J. Neveu, Discrete-Parameter Martingales. North-Holland Mathematical Library. American Elsevier, NY (1975). [Google Scholar]
  30. M. Rásonyi, On the statistical analysis of quantized Gaussian AR(1) processes. Int. J. Adapt. Control Signal Process. 24 (2010) 490–507. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.