Free Access
Issue
ESAIM: PS
Volume 21, 2017
Page(s) 235 - 250
DOI https://doi.org/10.1051/ps/2017016
Published online 12 December 2017
  1. N. Alon and J.H. Spencer, The Probabilistic Method. Wiley, New York, 2nd edition (2000). [Google Scholar]
  2. L. Babai, P. Erdős and S.M. Selkow, Random graph isomorphism. SIAM J. Comput. 9 (1980) 628–635. [CrossRef] [Google Scholar]
  3. L. Babai and L. Kučera, Canonical labelling of graphs in linear average time. In Proc. of FOCS’79, the 20th Ann. Sympos. Foundations Comput. Sci. (1979) 39–46. [Google Scholar]
  4. L. Babai and E.M. Luks, Canonical labeling of graphs. In Proc. of STOC’83, the Fifteenth Annual ACM Symposium on Theory of Computing (1983) 171–183. [Google Scholar]
  5. B. Bollobás, Random Graphs. Cambridge University Press, Cambridge, UK, 2nd edition (2001). [Google Scholar]
  6. T. Czajka and G. Pandurangan, Improved random graph isomorphism. J. Discrete Algorithms 6 (2008) 85–92. [CrossRef] [Google Scholar]
  7. P. Erdős and A. Rényi, On random graphs I. Publ. Math. (Debrecen) 6 (1959) 290–297. [Google Scholar]
  8. E.N. Gilbert, Random graphs. Ann. Math. Statist. 30 (1959) 1141–1144. [CrossRef] [Google Scholar]
  9. R.M. Karp, Probabilistic analysis of a canonical numbering algorithm for graphs. In Relations Between Combinatorics and Other Parts of Mathematics, edited by D.K. Ray-Chaudhuri. Vol. 34 of Proc. of Symposia in Pure Mathematics. Providence, RI. AMS (1979) 365–378. [Google Scholar]
  10. A.V. Kostochka and D.B. West, Chvàtal’s condition cannot hold for both a graph and its complement. Discuss. Math. Graph Theory 26 (2006) 73–76. [CrossRef] [Google Scholar]
  11. R.J. Lipton, The beacon set approach to graph isomorphism. Technical Report 135, Department of Computer Science, Yale University, New Haven, CT (1978). [Google Scholar]
  12. B.D. McKay and N.C. Wormald, The degree sequence of a random graph. I. The models. Random Struct. Algorithms 11 (1997) 97–117. [CrossRef] [Google Scholar]
  13. P. Pedarsani and M. Grossglauser, On the privacy of anonymized networks. In Proc. of KDD’11, the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2011) 1235–1243. [Google Scholar]
  14. B. Ràth, Mean field frozen percolation. J. Statist. Phys. 137 (2009) 459–499. [CrossRef] [Google Scholar]
  15. F. Skerman, Degree sequences of random bipartite graphs. Ph.D. thesis, The Australian National University, Canberra (2010). [Google Scholar]
  16. M. Vento and P. Foggia, Graph matching techniques for computer vision. In Graph-Based Methods in Computer Vision: Developments and Applications, edited by X. Bai, J. Cheng, and Edwin Hancock. Information Science Reference, Hershey, PA (2013) 1–41. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.