Free Access
Issue
ESAIM: PS
Volume 21, 2017
Page(s) 113 - 137
DOI https://doi.org/10.1051/ps/2016029
Published online 19 October 2017
  1. S. Asmussen, Convergence rates for branching processes. Ann. Probab. 4 (1976) 139–146. [CrossRef]
  2. K.B. Athreya and P.E. Ney, Branching processes. Reprint of the 1972 original Springer, New York; MR0373040. Dover Publications, Inc., Mineola, NY (2004).
  3. K.B. Athreya, Limit theorems for multitype continuous time Markov branching processes. II. The case of an arbitrary linear functional. Z. Wahrsch. Verw. Gebiete 13 (1969) 204–214. [CrossRef]
  4. F. Ball, M. González, R. Martínez and M. Slavtchova−Bojkova, Stochastic monotonicity and continuity properties of functions defined on Crump-Mode-Jagers branching processes, with application to vaccination in epidemic modelling. Bernoulli 20 (2014) 2076–2101. [CrossRef]
  5. N. Champagnat and H. Benoit, Moments of the frequency spectrum of a splitting tree with neutral poissonian mutations. Electron. J. Probab. 21 (2016) 34. [CrossRef]
  6. N. Champagnat and A. Lambert, Splitting trees with neutral Poissonian mutations I: Small families. Stochastic Process. Appl. 122 (2012) 1003–1033. [CrossRef]
  7. N. Champagnat and A. Lambert, Splitting trees with neutral Poissonian mutations II: Largest and oldest families. Stochastic Process. Appl. 123 (2013) 1368–1414. [CrossRef]
  8. N. Champagnat, A. Lambert and M. Richard, Birth and death processes with neutral mutations. Int. J. Stoch. Anal. 20 (2012) ID 569081.
  9. W. Feller, An introduction to probability theory and its applications. Vol. II. 2nd edition. John Wiley & Sons, Inc., New York London-Sydney (1971).
  10. J. Geiger and G. Kersting, Depth-first search of random trees, and Poisson point processes. In Classical and modern branching processes (Minneapolis, MN, (1994)), vol. 84 of IMA Math. Appl. Springer, New York (1997) 111–126.
  11. J. Geiger, Size-biased and conditioned random splitting trees. Stochastic Process. Appl. 65 (1996) 187–207. [CrossRef]
  12. S. Grishechkin, On a relationship between processor-sharing queues and Crump-Mode-Jagers branching processes. Adv. Appl. Probab. 24 (1992) 653–698.
  13. C.C. Heyde, A rate of convergence result for the super-critical Galton-Watson process. J. Appl. Probability 7 (1970) 451–454. [CrossRef]
  14. C.C. Heyde, Some central limit analogues for supercritical Galton-Watson processes. J. Appl. Probab. 8 (1971) 52–59.
  15. A. Iksanov and M. Meiners, Rate of convergence in the law of large numbers for supercritical general multi-type branching processes. Stochastic Process. Appl. 125 (2015) 708–738. [CrossRef]
  16. A.E. Kyprianou, Fluctuations of Lévy processes with applications. Universitext. Springer, Heidelberg, 2nd edition (2014). Introductory lectures.
  17. A. Lambert, The contour of splitting trees is a Lévy process. Ann. Probab. 38 (2010) 348–395. [CrossRef]
  18. A. Lambert, Fl. Simatos and B. Zwart, Scaling limits via excursion theory: interplay between Crump-Mode-Jagers branching processes and processor-sharing queues. Ann. Appl. Probab. 23 (2013) 2357–2381. [CrossRef]
  19. O. Nerman, On the convergence of supercritical general (C-M-J) branching processes. Z. Wahrsch. Verw. Gebiete 57 (1981) 365–395. [CrossRef]
  20. P. Olofsson and S.S. Sindi, A Crump-Mode-Jagers branching process model of prion loss in yeast. J. Appl. Probab. 51 (2014) 453–465. [CrossRef]
  21. M. Richard, Arbres, Processus de branchement non Markoviens et processus de Lévy. Ph. D. Thesis, Université Pierre et Marie Curie, Paris 6.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.